MODEL OE1201 DSP Lock-In Amplifier

Copyright © 2015 by SSI. All Rights Reserved.

Revision 1.4, 2020-05-20

目录

1.	技术参数	. 1
	1.1 信号通道	1
	1.2 参考通道	1
	1.3 解调器	2
	1.4 信号发生器	2
	1.5 显示	2
	1.6 辅助输出	3
	1.7 接口	3
	1.8 其他	3
2.	锁相放大器基础	. 4
	2.1 锁相放大器介绍	4
	2.2 OE1201 功能原理图	6
	2.3 参考通道	6
	2.4 相敏检波器	7
	2.5 时间常数和直流增益	8
	2.6 直流输出和增益	10
	2.7 OE1201 动态储备	11
	2.8 信号输入放大和滤波	12
	2.9 输入端连接	13
	2.10 固有噪声	15
	2.11 外部噪声源	16
	2.12 谐波测量	18
3.	界面介绍	19
	3.1 前面板	19
	3.1.1 显示屏	19
	3.1.2 旋钮	19
	3.1.3 键盘	19
	3.1.4 BNC 连接器	19
	3.1.4 BNC 连接器3.2 后面板	
		20
	3.2 后面板	20 20
	3.2 后面板	20 20 20
	3.2 后面板	20 20 20
	3.2 后面板	20 20 20 20
	3.2 后面板 3.2.1 电源接口 3.2.2 USB 3.2.3 RS232 3.2.4 BNC 连接器	20 20 20 20 21
	3.2 后面板 3.2.1 电源接口 3.2.2 USB 3.2.3 RS232 3.2.4 BNC 连接器 3.3 主界面	20 20 20 20 21
	3.2 后面板 3.2.1 电源接口 3.2.2 USB 3.2.3 RS232 3.2.4 BNC 连接器 3.3 主界面 3.3.1 状态栏	20 20 20 20 21 21
	3.2 后面板 3.2.1 电源接口 3.2.2 USB 3.2.3 RS232 3.2.4 BNC 连接器 3.3 主界面 3.3.1 状态栏 3.3.2 功能栏 3.3.3 监测栏 3.3.4 菜单栏	20 20 20 21 21 23 24
4.	3.2 后面板 3.2.1 电源接口 3.2.2 USB 3.2.3 RS232 3.2.4 BNC 连接器 3.3 主界面 3.3.1 状态栏 3.3.2 功能栏 3.3.3 监测栏	20 20 20 20 21 21 23 24

	4.1.1 <source/> : 输入模式设置	26
	4.1.2 <current gain="">:电流增益设置</current>	26
	4.1.3 < Grounding>: 接地设置	27
	4.1.4 <coupling>: 耦合设置</coupling>	27
	4.1.5 <line notches="">: 陷波器设置</line>	27
	4.2 [REF/PHASE]菜单	28
	4.2.1 <phase>:参考相位设置</phase>	28
	4.2.2 <ref.source>: 参考信号源设置</ref.source>	28
	4.2.3 <freq>: 内部参考信号频率设置</freq>	28
	4.2.4 <slope>: 外部参考信号类型设置</slope>	28
	4.2.5 <harmonic>:谐波检测设置</harmonic>	
	4.3 [GAIN/TC]菜单	29
	4.3.1 <sens>: 满偏灵敏度设置</sens>	30
	4.3.2 <dr>: 动态储备设置</dr>	30
	4.3.3 <tc>: 时间常数设置</tc>	30
	4.3.4 <filter>: 低通滤波器陡降设置</filter>	30
	4.3.5 <sync>: 同步滤波器设置</sync>	31
	4.4 [DISPLAY] 菜单	31
	4.5 [CHANNEL OUTPUT]菜单	31
	4.5.1 <ch output="">: 输出通道设置</ch>	32
	4.5.2 <source/> : 输出通道源设置	32
	4.5.3 <offset>: 偏置设置</offset>	32
	4.5.4 <expand>: 放大设置</expand>	33
	4.5.5 <sine output="">: 正弦信号输出设置</sine>	33
	4.6 [UTILITY] 菜单	33
	4.6.1 <storerecall>: 保存和读取参数设置子菜单</storerecall>	33
	4.6.2 <usb>: USB 串口通信设置子菜单</usb>	34
	4.6.3 <rs232>: RS232 通信设置子菜单</rs232>	35
	4.6.4 <system>: 系统设置子菜单</system>	36
	4.6.5 <info>: 信息查看子菜单</info>	37
5.	远程编程	38
	5.1 OE1201 命令语法	38
	5.2 详细的命令列表	39
	5.2.1 参考与相位指令	40
	5.2.2 输入与滤波器指令	41
	5.2.3 灵敏度和时间常数指令	42
	5.2.4 通道输出指令	43
	5.2.5 保存读取设置指令	44
	5.2.6 数据读取指令	45
	5.2.7 状态读取指令	46
	5.2.8 IDN 指令	47
6	PC 软件安装使用说明	48

OE1201 DSP Lock-In Amplifier

	6.1 软件安装	48
	6.2 软件使用说明	51
	6.2.1 软件运行	51
	6.2.2 PC 机与 OE1201 连接	52
	6.2.3 输入信号配置	54
	6.2.4 参考信号及相移配置	55
	6.2.5 动态储备和灵敏度配置	56
	6.2.6 谐波检测配置	57
	6.2.7 滤波器配置	58
	6.2.8 输出通道配置	60
	6.2.9 正弦信号输出配置	61
	6.2.10 数据保存	61
	6.3 软件使用实例	62
7.	性能测试	69
	7.1 启动测试	71
	7.2 直流偏置	71
	7.3 共模抑制	71
	7.4 幅值精度和平坦度	72
	7.5 幅值线性度	73
	7.6 频率精度	74
	7.7 Sine Out 幅值精度和平坦度	75
	7.8 直流输出	76
	7.9 输入噪声	76
	7.10 OE1201 性能测试记录表	78
8.	操作实例	. 80
	8.1 基本信号测量	80
	8.2 谐波测量	84
	8.3 某任意光源光谱测量	87
	8.4 串口诵讯	90

1. 技术参数

1.1 信号通道

● 电压输入模式 单端或差分输入

● 满偏灵敏度 1 nV 至 1 V, 以 1-2-5 的顺序标定

● 电流输入 10⁶或 10⁸ V/A

• 输入阻抗

电压 10 MΩ//10 pF,交流或直流耦合

电流 1 kΩ 到虚拟地

● 共模抑制比 >100 dB 至 10 kHz, 以 6 dB/oct 减小

● 动态储备 >120 dB

● 增益精度 标准 0.2%, 最大 1%

● 电压噪声

997 Hz 时 9 nV/ √ Hz

● 电流噪声

97 Hz 时 0.15 pA/ √ Hz 997Hz 时 0.13 pA/ √ Hz

● 工频滤波器 50/60 Hz 和 100/120 Hz (出厂内部设定)

● 接地 BNC (A/I, B)屏蔽层可直接接地或者通过 1kΩ 电阻接至浮地

1.2 参考通道

输入

 频率范围
 50mHz 至 120 kHz

 参考输入
 方波或正弦波

输入阻抗 1 MΩ

方波参考电平 $V_{\rm IH}>3V$, $V_{\rm IL}<0.5V$

正弦参考信号 >1 Hz

> 400 mVpp

相位

分辨率 0.01° 绝对相位误差 <1° 相对相位误差 <0.01°

正交性

内部参考 综合,在1kHz时: <0.0001°rms

外部参考 在 1 kHz 时: 0.005°rms(时间常数 100 ms, 12 dB/oct)

温漂

低于 10 kHz <0.1°/℃ 高于 10 kHz <0.2°/℃

● 谐波检测 2F, 3F, ...nF 至 120 kHz (n<32,767)

• 采集时间

内部参考即时采集

外部参考 (4 个周期+ 5 ms)或者 100 ms

1.3 解调器

● 稳定性

数字输出 所有设置均无零点漂移 显示 所有设置均无零点漂移

模拟输出 所有动态储备设置小于 5 ppm/℃

● 谐波抑制 -90 dB

● 时间常数 10 us 至 3 ks (<100Hz). 6, 12, 18, 24 dB/oct 陡降

10 us 至 30 s (>100Hz). 6, 12, 18, 24 dB/oct 陡降

● 同步滤波器 低于 20 Hz 时且 18,24 dB/oct 陡降有效

1.4 信号发生器

频率

范围 50 mHz 至 120 kHz 精度 2 ppm + 30 uHz

分辨率 1 mHz

失真 -80 dBc (f<10 kHz), -70 dBc (f>10 kHz)幅值 0.100Vrms 至 1.000Vrms (分辨率 1mVrms)

1.000VIIIS 上 1.000VIIIIS (ガ粉ギ III

误差 标准 1%, 最大 3%

温度稳定性 100 ppm/℃

● 正弦输出 正弦信号,输出阻抗 50 Ω

● TTL 同步输出 5V TTL/CMOS 电平,输出阻抗 200Ω

1.5显示

● 屏幕 3.5 英寸, 320×240 的 TFT 彩色液晶

 屏幕格式
 单通道显示

 显示值
 可显示 X,Y,R,θ 值

 显示类型
 数字显示

 颜色风格
 黄色,绿色

1.6辅助输出

● CH1和CH2

功能 输出 X,Y,R,θ 和谐波

幅值 ±5 V

驱动电流 ±30mA max

1.7接口

● RS-232 转 USB USB 接口控制和读取仪器参数及数据

● RS-232 接口 标准 9 脚 RS-232 公接口控制和读取仪器参数及数据

1.8 其他

● 电源要求

电压 110~220 V AC 频率 50/60 Hz

功率 标准 10 W, 最大不超过 20W

● 重量 3.2 KG

尺寸

宽 259 mm 深 320 mm

高

包括支脚 115 mm 不包括支脚 102 mm

2. 锁相放大器基础

2.1锁相放大器介绍

锁相放大器是用于微弱信号检测的装置,微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器是基于互相干方法的微弱信号检测手段,其核心是相敏检测技术(Phase-Sensitive Detection),利用与待测信号有相同频率和固定相位关系的参考信号作为基准,提取出与参考信号有关的信号分量,过滤掉参考频率以外的噪声分量。

对微弱信号的最基本处理是放大,传统的放大处理在放大信号的同时,也放大了噪声,而且在不进行带宽限制或滤波处理的情况下,任何放大操作都将使得信号信噪比下降。因此,必须采用滤波手段提纯信号,提高信噪比,以实现对微弱信号的准确测量。但要实现中心频率可调而且稳定、高Q值的带通滤波器,往往十分困难。

相敏检测器 (PSD) 可以取代高 Q 值的带通滤波器, 其基本模块包含一个将输入信号与参考信号相乘的乘法模块和一个对相乘结果进行低通滤波的滤波器模块。有时 PSD 也特指乘法模块, 不包含滤波器模块。如图 1 所示。

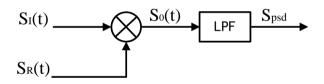


图1. 相敏检测示意图

 $S_I(t)$ 是掺杂了噪声的时域输入信号, $S_R(t)$ 为与输入待测信号有相同频率关系的参考信号。PSD 结合待测信号通道和参考信号通道,即可以形成一路完整的锁相放大器功能架构,称为单相型锁相放大器。其结构原理图如图 2 所示。

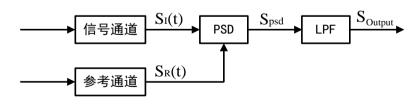


图2. 单相型锁相放大器结构图

信号通道进入 PSD 模块的信号可定义为:

$$S_I(t) = A_I \sin(\omega t + \varphi) + B(t)$$

其中 ω 是待测信号频率, $A_I \sin(\omega t + \varphi)$ 是待测信号,B(t)是总噪声。

参考信号通道输出的标准参考信号可定义为:

$$S_R(t) = A_R \sin(\omega t + \delta)$$

两路信号同时输入 PSD 模块进行乘法操作,得到的输出为:

$$S_{psd} = S_I(t)S_R(t) = A_I A_R \sin(\omega t + \varphi) \sin(\omega t + \delta) + B(t)A_R \sin(\omega t + \delta)$$

$$= \frac{1}{2}A_I A_R \cos(\varphi - \delta) - \frac{1}{2}A_I A_R \cos(2\omega t + \varphi + \delta) + B(t)A_R \sin(\omega t + \delta)$$

上式结果有三部分,其中第一部分包含待测信号幅值 A_I 、参考信号幅值 A_R 以及输入信号相对于参考信号的相位差($\varphi - \delta$)的余弦值,在输入信号有用部分与参考信号均稳定的情况下,可以认为该部分为一定值,即直流信号;同理,第二部分为原参考信号二倍频交流信号;而第三部分为噪声信号与参考信号的相乘,根据正弦信号的完备性可知,随机信号与其不具有相关性,其积分结果为零。

另一方面,从频谱来看,第一部分结果处于直流部分,第二部分在参考信号二倍频点, 第三部分为原随机信号经过ω频谱搬移,以白噪声为例,搬移结果仍为白噪声。因此,将结 果输入低通滤波器可以得到其直流部分如下:

$$S_{\text{Output}} = \frac{1}{2} A_I A_R \cos(\varphi - \delta)$$

虽然通过调整待测信号与参考信号的相位差 $(\varphi - \delta)$ 就能确定待测信号的幅值,但是这个调整的精度是很难保证的。双相锁相放大器的产生很好的解决了这个问题。如图 3 所示是双相锁相放大器的原理架构图。

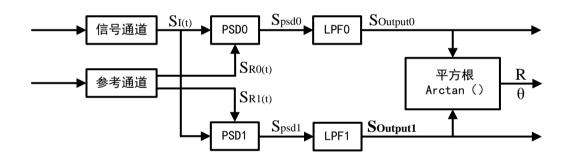


图3. 双相锁相放大器结构图

令相位差 $\theta = \varphi - \delta$,其中参考通道产生两个相差 90°的正弦信号: $S_{R0}(t) = A_R \sin(\omega t + \delta)$, $S_{R1}(t) = A_R \cos(\omega t + \delta)$,

可计算出输出结果为: $S_{\text{Output0}} = \frac{1}{2} A_I A_R \cos \theta$, $S_{\text{Output1}} = \frac{1}{2} A_I A_R \sin \theta$.

定义 $X = A_I \cos \theta$, $Y = A_I \sin \theta$, 因此可计算出不依赖于相位差的输出幅值:

$$R = \sqrt{X^2 + Y^2} = A_I = \frac{2 \times \sqrt{S_{Output0}^2 + S_{Output1}^2}}{A_R}$$

参考信号与待测信号之间的相位差可由下式得到:

$$\theta = tan^{-1}(Y/X)$$

2.20E1201 功能原理图

数字锁相放大器 OE1201 的原理框图如下所示:

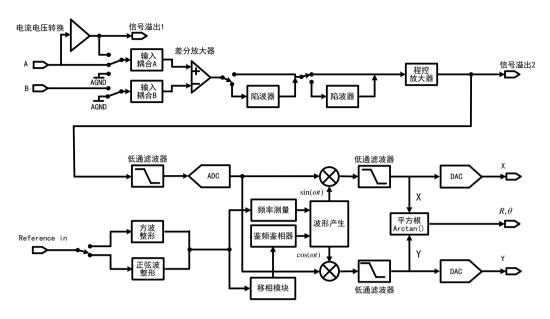


图4. OE1201 原理框图

总体来看, 其功能模块大致分为信号调理通道、参考信号处理通道、算法实现模块、系统主控等部分。

2.3 参考通道

参考通道的功能是为相敏检测器提供与被检测信号相干的控制信号, OE1201 的参考信号可根据实际情况来选择正弦波或者方波信号, 其输入阻抗为 1 MΩ。

通常情况下两种参考波形都可以使用,TTL 参考时,要求高电平>3V,低电平<0.5V;正弦参考为交流耦合,正弦信号幅值大于 0.4Vpp 有效。但**当频率低于 1 Hz 时,必须使用 TTL 电平信号模式**。由于正弦波信号在输出的幅值较小时信噪比较低,而且幅值会有抖动,而很多函数发生器都可以产生稳定的 TTL 同步信号,所以更推荐使用方波信号作为参考信号。

OE1201 锁相放大器有两种参考源模式,一为内部参考模式,二为外部输入模式。

当设定为内部参考信号模式时,仪器内部的高精度振荡器和合成算法能够产生用于与输入信号相乘的正弦波信号,此时不需用锁相环进行锁相,内部参考信号几乎不会受到相位噪声的影响。OE1201 的内部参考模式能够在 50 mHz 至 120 kHz 的频率范围内正常工作。由于内部振荡器与外部信号源的振荡器会有一定的频率偏差,而且没有锁相环跟踪锁定,因此内部产生的正弦信号与待测信号之间会有一定的频率差,并且不能保证两者间的相位稳定性。

OE1201 也能够使用外部参考信号模式,正弦波信号和 TTL 逻辑电平可作为外部参考信号。锁相环在实际工作中会产生一定的相位抖动,这可能会造成测量的误差。相位抖动导致

参考信号掺杂了不同频率的噪声,根据 PSD 相干原理,输出信号不仅包含有与参考信号频率相同的待测信号,还包含参考信号中其它频率的噪声。实际上,相位抖动一般比较小,不会造成测量问题。如果需要无抖动的测量,可以选用内部参考模式。由于该模式没有使用锁相环,内部晶振与参考信号是直接相连的,所以没有额外的相位抖动干扰。

2.4 相敏检波器

OE1201 的相敏检波器(PSD)由一个数字乘法器来实现。输入信号放大滤波后由 16 bit A/D 转换器变为数字信号输入到相敏检测器。又因为内部信号发生器产生的参考信号是位宽为 32 bit 的数字量,所以本产品的相敏检波模块的精度为 48 bit。

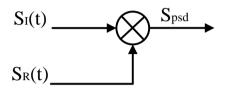


图5. 相干检测核心部分

锁相放大器的相敏检波模块主要实现输入信号与参考信号的相干调制,传统的锁相放大器通过一个模拟乘法器来实现以上功能。但这种以模拟技术实现相干调制的方法存在诸多缺陷,它不仅会极大地限制相敏检波器的精度还会引入很多背景噪声,这些对于微弱信号的测量都是极为不利的。

基于以上考虑,本产品采用数字技术来实现信号的相干调制。因为内部信号发生器产生的参考信号是位宽为 32 bit 的数字信号,所以它能极大地避免谐波分量对相干调制的影响。实际上,谐波分量的抑制可达-120 dB,这就意味着在相干调制的过程中谐波分量几乎没有影响。

另外由于模拟技术实现的相敏检波器存在温度漂移、直流偏置,所以其输出结果往往与实际结果间存在一定的偏差(即系统误差,并且这一系统误差往往带有不确定性),而以数字技术实现的相敏检波器就可以避免这一问题的产生。在系统正常工作的情况下,几乎不会产生相应的系统误差。考虑到模拟乘法器的输入量均是模拟量,所以其参考信号也会受到温度漂移效应的影响。这就会使得参考信号也会存在偏差,进而使得相干调制的结果存在更大的系统误差。

以模拟技术实现的相敏检波器的动态储备基本被限制在 60 dB 以下,这是因为在模拟系统中往往存在很多背景噪声。由于锁相放大器主要用于微弱信号的检测,所以当背景噪声的幅值与信号相接近或是比信号更大时相干调制的结果就会出错。而采用数字技术实现的相敏检波器就不存在此类问题,它的动态储备主要受 A/D 转换的质量限制。一旦输入信号完成数字化后,就不会在相干调制的过程中引入额外的误差。实际上,OE1201 的动态储备能达到120 dB 以上。

综上可以看出, 以数字技术实现的相敏检波器在各方面性能上均优于以模拟技术实现的

相敏检波器,并且以数字技术实现的相敏检波器还拥有易于调试等优点,因而成为本产品的最优选择。

2.5 时间常数和直流增益

相敏检波器的输出包含很多频率成分的信号,其中既有输入信号与参考信号的和频成分也有两者的差频成分以及噪声信号,并且仅当输入信号与参考信号同频时,两者的差频信号才为一直流信号。相敏检波器后端的低通滤波器能将除直流分量外的噪声信号和和频信号滤除,以便让锁相放大器具备一个高品质带通滤波器的功能。

时间常数

相敏检波器后端的低通滤波器的带宽设置方法与常规的低通滤波器相同,均是通过设置时间常数来实现。其中时间常数的计算公式为:

$$TC = \frac{1}{2\pi f}$$

其中 f 为滤波器-3 dB 处的频率值。例如对于一个一阶的 RC 低通滤波器而言, 1 秒的时间常数意味着它的-3 dB 的截止频率为 0.16 Hz。

通常情况下,当系统的输入端有噪声时输出端也会因此而产生噪声。但通过增大时间常数的值能够使系统的输出端更稳定也能减轻输入端噪声对输出端的影响。时间常数除了对系统的稳定性和精度有影响外,还会影响系统的响应时间。对于一阶 RC 低通滤波器而言,需要等待 5 倍时间常数以上的时间,才能使输出结果稳定。

另外时间常数还决定噪声测量时的等效噪声带宽(ENBW)。在此特别说明一下,等效噪声带宽指的并不是滤波器的-3 dB 带宽,它指的是对高斯噪声的有效带宽。

各阶 RC 低通滤波器的等效噪声带宽和响应等待时间如表 1 所示:

滤波器阶数	陡降	等效噪声带宽	输出到达 99%稳定度所需时间
1	6 dB/oct	$\frac{1}{4 \times TC}$	4.6 × TC
2	12 dB/oct	$\frac{1}{8 \times TC}$	6.6 × TC
3	18 dB/oct	$\frac{3}{32 \times TC}$	8.4 × TC
4	24 dB/oct	5 64 × <i>TC</i>	10 × TC

表1. 各阶 RC 低通滤波器的 ENBW 和响应等待时间

数字滤波器与模拟滤波器对比

为了尽量提升 OE1201 的性能,我们采用数字滤波器来实现对相干调制结果的低通滤波处理。与大多数模拟系统与数字系统的对比一样,数字系统拥有很多模拟系统所不具备的优

势。首先模拟器件固有的温度漂移和非线性将极大的限制滤波器的滚降程度。其次,要通过模拟器件搭建一个时间常数大、高品质的低通滤波器需要占据相当大的电路板面积,这不仅会使得仪器的成本上升,而且大量的模拟器件也会为今后的调试带来很大的难度。

本产品采用数字技术实现的低通滤波器是一个 64 bit 位宽, 直流增益严格为 0 dB, 等效 Q 值最高达 145 dB 以上的窄带滤波器。

同步滤波器

数字滤波器的另一个优势是可以轻松搭建同步滤波器。即使输入信号没有噪声,相敏检波器的输出仍会包含输入信号与参考信号的和频分量(二倍频分量),并且这一和频分量幅值可能会大于所需的差频分量幅值。在频率较低的情况下,要过滤掉二倍频分量所需要的时间常数会很大。例如输入信号是 1Hz 频率的波形,那么二倍频分量即为 2Hz,即使是 10 秒时间常数的二阶 RC 滤波器,对于 2Hz 频率位置的衰减也只有 40 多 dB。

同步滤波器是把参考频率的一个完整周期时间内的所有数据作平均算法,可以有效过滤参考频率的所有倍频分量。在上述的例子中,如果用了同步滤波器,只需要 1 秒的等待时间,即可以实现比 10 秒时间常数的 RC 滤波器更好的效果。

在 OE1201 中,同步滤波器被设置为当检测频率低于 20 Hz 时有效。因为频率更高时,和频分量能够在时间常数较小的情况下被移除,所以此时没必要使用同步滤波器。在同步滤波器的后端我们还设计了二阶滤波器,这样的滤波器组合不仅能够滤除参考信号的谐波分量,还能滤除其余的噪声信号。

较大的时间常数

用模拟技术实现的滤波器很难实现高于 100 s 的时间常数。这是因为此时所需的电容不仅在数值上还是在规格上都过大。但为什么需要如此大的时间常数? 因为在某些情况下你是别无选择的。例如当参考信号的频率低于 1 Hz 并且存在很多低频噪声干扰时,相敏检波器的输出就会包含很多低频成分的干扰。同步滤波器仅能滤除其中参考信号的谐波分量,其余的噪声信号需要由其后置的滤波器来滤除。

OE1201 在参考频率低于 100 Hz 时,能提供最高达到 3000 s 的时间常数,这能满足大多数测量的需求。

直流输出增益

相敏检测器的直流输出能有多大?它取决于动态储备的大小。当动态储备为 60 dB 时,代表噪声信号会比满量程的信号大 1000 倍。在相敏检测器中,噪声信号不能超过相敏检测器的输入范围。在一个模拟锁相放大器中,假设相敏检测器的最大输入幅值为 5 V。在它的动态储备为 60 dB 时,相敏检测器输入端的信号将只有 5 mV。而相敏检测器是不会放大信号的,所以其输出仅有几毫伏。即使相敏检测器的直流输出没有误差,后端的放大器直接将其放大 1000 倍到 5V,也很容易使信号失真。如果 PSD 有 1 mV 的偏移量,则将在输出端变为 1 V 的输出。这就是为什么基于模拟技术的相敏检测器不能达到太高的动态储备的原因。

因为基于数字技术的锁相放大器没有采用模拟直流放大器, 所以数字锁相放大器不存在

直流输出的偏置。数字直流放大器也不存在输入偏移量。数字直流放大器只需将接受到的数据与预先设定好的增益相乘,再将结果输出即可。这就是 OE1201 在动态储备能达到 120 dB 时仍能不受偏置影响的原因。

2.6 直流输出和增益

OE1201 在后面板有 CH1 和 CH2 两个输出通道。

CH1 和 CH2 的输出与显示

CH1 和 CH2 的输出范围为-5 V 到+5 V。根据当前测量信号的测量结果与当前设置测量范围的比例,正比到输出。除此之外,OE1201 还能通过前面板的显示屏显示 CH1 和 CH2 的数据,其中包括被测信号的 X 值、 Y 值、R 值、 θ 值。

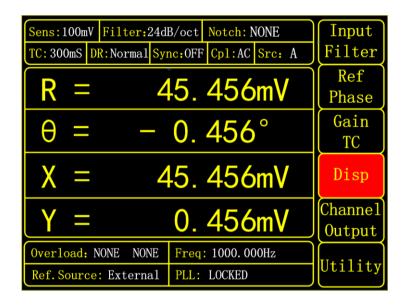


图6. OE1201 显示界面

X. Y和 R 的输出偏移与增益

OE1201 能够通过设置偏移量以抵消测量时的误差。这对于测量值在某些标称值附近存在误差的情况下是极其有用的。因为偏移量可以在范围内任意设置,所以输出的偏移量几乎为零。输出的变化可以直接从显示屏或后面板的输出端读出。偏移量以满刻度输出的百分比形式表示并且这一比值不会因为灵敏度的变化而改变。偏移量最多可以设置为满刻度输出的±100%。

X、Y和R的输出值也能增大。这一功能是通过给输出的数据乘上一个增益因子来实现的。因此,一个仅有满偏刻度十分之一的信号经过扩充后能提供10V的输出而不是1V的输出。输出信号增益的一般作用是在某些非零值的附近增大测量分辨率。

在不超过满偏刻度的情况下,OE1201 能够提供增益因子为+1 \sim +256 多个档位的输出增益。其输出增益的计算公式为:

$$Output = \left(\frac{Signal}{Sens} + Offset\right) \times Expand \times 5(V)$$

<Offset>可在 -100% \sim +100% 之间进行设置,可通过数字键盘直接输入,最小步进为 0.01%; <Expand>值可在 +1 \sim +256 之间进行设置,可通过数字键盘直接输入,最小步进为 1。例如:

Output =
$$\left(\frac{0.1 \text{mV}}{1 \text{mV}} + 0.2\right) \times 2 \times 5(V) = 3(V)$$

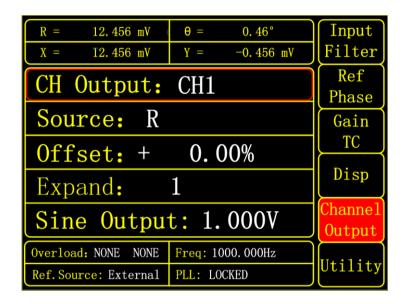


图7. 输出偏移与增益设置

2.7 0E1201 动态储备

动态储备的定义是最大可容纳的噪声信号和满量程信号的比值。动态储备表示锁相放大器对噪声容忍程度的大小,通常以 dB 表示。

动态储备 =
$$20 \lg \frac{OVL}{FS} (dB)$$

其中 OVL 表示输入总动态范围, FS 是最大量程,表示输出动态范围。若动态储备为 100dB,表示系统能容忍的噪声可以比有用信号高出 10⁵ 倍。

实际上动态储备设置应该保证整个实验过程中不发生过载,过载还可能出现在前置放大器的输入端和 DC 放大器的信号输出端。系统的输入增益与动态储备成反比,因为噪声也会随着输入增益而放大,因此**可以通过减少输入增益来实现高动态储备。**前级放大倍数设置为较合理范围,以防止噪声过载,经过 PSD 和低通滤波器滤掉了大部分噪声后,直流放大倍数设置为较大值,将信号放大到满量程。

锁相放大器的输入信号在 PSD 处理之前需要交流放大,而在 PSD 处理之后进行直流放大即可。在总增益不变的情况下,如果调整交流增益增加,直流增益减小,则输入噪声经交流放大很容易使 PSD 过载,动态储备减小,同时输出的直流漂移减小。反之,如果增加直流增益,降低交流增益,则动态储备提高,使锁相放大器具有良好的抗干扰能力,但以输出

稳定性为代价,降低了测量精度。

直流放大输出精度受噪声的频率和幅值影响。幅值较大且与信号频率相同的噪声经过 PSD 后同样变成直流信号,这样经过低通滤波器时直接叠加到输出,对输出结果造成影响。

动态储备与噪声频率有关。在参考频率处的动态储备为 0, 远离参考频率时动态储备增加, 离参考频率足够远时, 动态储备可达到最大值。参考频率附近的动态储备对仪器噪声容限极其重要, 增加低通滤波器的级数可以提高滤波效果, 从而增加参考频率附近的动态储备。远离参考频率的动态储备一般比较大, 但一般对测量影响不大。

OE1201 动态储备可达 120 dB 以上,高的动态储备会产生输出噪声和漂移。当动态储备较高时,由于模数转换器的噪声存在导致输出误差增加。所有的信号源都存在本底噪声,因此在 PSD 提取信号过程中就会掺杂着噪声,如果噪声很大,在高动态储备测量中就会产生较大的输出误差。如果外部噪声较小,则其输出主要是受 OE1201 自身噪声影响。这时可以通过降低动态储备和直流增益来降低输出误差。因此,在实际应用中应尽量使用较低动态储备,即较高的输入增益。

2.8 信号输入放大和滤波

锁相放大器可以测量出低至纳伏级的微弱信号。模数转化器可以将模拟信号数字化,但信号必须达到足够被识别的强度。因此低噪声信号放大器必须有足够大的增益,将信号增强到可直接被模数转化器转化,而无需降低信号的信噪比。OE1201 的模拟放大倍数增益大约2 到 3000 倍,较高的增益并不会提高信噪比。

直流信号和交流信号的总增益由灵敏度确定,两者的增益则由动态储备设定。

输入噪声

OE1201 信号放大器的输入噪声约为 10 nVrms/ \sqrt{Hz} 。如果放大器的输入噪声为 10 nVrms/ \sqrt{Hz} ,增益为 1000 倍,那么将输出 10 μVrms/ \sqrt{Hz} 噪音。假设放大器的输出为一阶 RC 低通滤波器(6 dB/oct 的滚降),RC 过滤器的时间常数为 100 ms。放大器的输入噪声和电阻的约翰逊噪声具有高斯噪声性质,其噪声的量正比于该噪声带宽的平方根。单级 RC 滤波器的等效噪声带宽(ENBW)为 1/(4×TC)。这意味着,在滤波器的输入端的高斯噪声进行滤波,其有效带宽等于 ENBW。在这个例子中,滤波器输入端 10 uVrms/ \sqrt{Hz} 噪声,其等效噪声带宽为 2.5 Hz,滤波器的输出电压噪声为 10 μVrms/ \sqrt{Hz} × $\sqrt{2.5 Hz}$ = 15.8 μ Vrms。对于高斯噪声,噪声峰峰值是噪声有效值的 6.6 倍左右。因此,输出有大约 100 μV 峰峰值噪声。

锁相放大器的输入噪声同理。在 50 μV 以下的量程内,输入增益达到最大,输入噪音的大小将决定输出噪声。而低通滤波器的等效噪声带宽又影响输出的噪声量。

等效噪声带宽取决于时间常数和滤波器滚降(参考 2.5 章)。例如,将 OE1201 设定到 $<5\mu V>$ 量程,设置时间常数为<100 ms>以及<6 dB/oct>的滚降,则其等效噪声带宽为 2.5 Hz。这个设置下,等效到输入端的噪声为 16 nVrms,输出为量程的 0.32%(即 16nV/5 μV),噪声峰峰值则是满量程的 2%左右。

假定信号是由一个低阻抗信号源发出的。其中电阻约翰逊噪声为 $0.13 \times \sqrt{R}$,以 100 Ω 电阻为例,常温下其约翰逊噪声为 1.3 nVrms/ \sqrt{Hz} 。而一个阻抗为 10 k Ω 的信号源的约翰逊

噪声 $13 \text{nVrms}/\sqrt{Hz}$ 都大于 OE1201 的自身输入噪声。系统总噪声大小由各个噪声源的平方之和后开根号计算出来。例如,一个 10 kΩ 阻抗的信号源接入到 OE1201,它自身的约翰逊噪声和 OE1022 的输入噪声叠加起来,总噪声大小为 $\sqrt{10^2+13^2}=16.4 \text{ nVrms}/\sqrt{Hz}$ 。

在增益较低时,经过放大后的噪声信号仍然低于模数转化器的自身噪声,此时系统的输出噪声主要是模数转换器噪声,但这种情况下的滤波器之后的直流增益很低,输出的噪声相对于有用信号可忽略不计。

陷波滤波器

OE1201 在信号放大电路中有两个陷波滤波器(过滤某一特定频率的带阻滤波器)。两个陷波器的谐振频率预先调节到电源工频(50Hz)和工频的两倍频率(100Hz)上。若噪声信号的频率和电源工频相同时,陷波器可以滤除噪声信号。在放大电路中滤除这些噪声信号,可以降低对动态储备的需求。这两个陷波器对谐振频率有60dB的衰减度。

若信号频率很接近陷波器频率时,则不能使用陷波器。陷波器对中心频率的信号有极大的衰减,而中心频率附近约 10 Hz 频率范围的信号也会衰减。一旦信号衰减了,测量的结果必然是错误的。另外陷波器会产生一定的相位,会对相位测量造成影响。

抗混叠滤波器

输入信号经过陷波器和放大电路之后,会通过抗混叠滤波器,这是信号的数字化处理前必须要完成的。根据奈奎斯特定理,采样频率至少是信号频率的两倍。比如信号频率是 100 kHz,那至少需要 200kHz 采样频率才能进行采样。OE1201 的 A/D 转换器采样频率是 485kHz, A/D 转换器无法转换高于 242.5 kHz 频率的信号,高于 242.5 kHz 的信号会违反奈奎斯特定理,导致欠采样。欠采样的结果是 A/D 转换器输出的数字流中,高频的信号将出现在低频部分,即信号发生混叠,造成测量错误。

为了避免欠采样这种情况,先将模拟信号进行低通滤波处理,消除信号超过 242.5 kHz 的高频部分。OE1201 的低通滤波器具有平坦的通带(0-120 kHz),在这个频率范围内的信号不会受影响。高于 120 kHz 的高频部分信号会被逐渐衰减,从 120 kHz 至 242.5 kHz 是过渡阶段,对高于 242.5 kHz 频率的信号和噪声产生 100 dB 的衰减。

输入阻抗

OE1022 的输入阻抗是 10M Ω 。如果需要更高的输入阻抗,可以使用 OE1022 的前置放大器 OE400X 系列。OE400X 系列前置放大器的输入阻抗可达 100 M Ω 或更高,满足用户的各种使用场景。

2.9 输入端连接

噪声存在于所有的电路中。即使在信号幅值较大的情况下,噪声也会降低测量的精度。 为了得到最佳测量精度,必须注意减少实验环境中可以避免的噪声源。除了系统固有噪声之外,其他噪声源(如市电噪声、信号发生器的噪声、在空间分布的电磁场等)的影响和不同 仪器之间的地电平差、地环路问题,可以在输入连线的环节降低影响。

我们的仪器有两种输入连接的方式,单端连接和差分连接。单端连接非常的方便,而差

分连接则能有效消除噪声的影响。

单端连接模式(A)

单端连接模式中,使用 A/I 输入端。锁相放大器检测 A/I 输入接口的中心导体和外壳导体之间的电压差。

一般认为,地电平是 0 V 的常量,然而不同仪器的地电平会有些许的差异。当信号源的 地电平与检测仪器的地电平直接相连时,它们的电平差值会导致一个大电流,即接地回路,这时候处于较高地电平的仪器的电流都通过较低地电平的仪器回流到大地,这样会导致两个 严重问题:一是较高地电平的仪器的噪声直接输入到低地电平的仪器里,二是低地电平的仪器有可能因为电流过大而损坏。要解决这个问题,通过在两个不同电平的地之间连接一个电阻就能消除接地回路问题,在 OE1201 里,有浮地(Float)和接地(Ground)两种电阻模式选择,浮地采用 1 k Ω 电阻,而接地采用 10 Ω 电阻。

另外,单端连接模式对噪声抵抗能力较弱。单根信号线就像天线,会被环境的电磁噪声 所影响,屏蔽层会吸收这些噪声,因为单端连接模式是检测中心信号线和屏蔽层的电压差, 因此这些噪声会被带入锁相放大器内部。

差分连接模式(A-B)

差分连接模式有两根信号线连接到信号源,每一根接到对应的输入端(A/I、B)中。这个模式下检测 A 和 B 接口的中心导体之间的电压差,两个接口的外壳屏蔽层吸收的噪声不会被锁相放大器获取。

使用差分连接模式有一个需要注意的地方,两个输入端的电缆应该紧密缠绕,不应形成 环路,以免产生电磁感应,从而给测量带来误差。

电流输入模式(I)

电流输入模式同样使用 A/I 输入端。这个模式下输入阻抗为 $1k\Omega$,电流增益为 10^6 或 10^8 V/A。测量量程是 1fA 至 1μA。这个模式适用于源阻抗大于 1MΩ 或 100MΩ(对应增益)的小电流测量。另外信号线的分布电容应该尽量较小,以免影响电流模式的测量带宽。

不同的电流增益的带宽是不一样的,如错误!未找到引用源。所示:

- CONTABILITY OF SCALE			
增益	带宽		
1M	70kHz		
100M	1kHz		

表2. 电流增益和带宽关系

交流耦合和直流耦合模式

OE1201 对输入的信号有交流耦合和直流耦合两种模式。交流耦合通过一阶 RC 高通滤波器(-3dB 频率是 0.16Hz)来滤除直流和较低频率信号,交流耦合应该在信号频率大于 10Hz (保证通带平坦度)的情况下使用。对于低于 10Hz 频率的信号,应该使用直流耦合模式。直流耦合模式不对输入信号有任何阻碍。

如果输入信号含有直流成分, 若没有被去除, 那会带来几个隐患: 在放大电路中直流分

量也会被放大,如果被放大到超过 A/D 转换器的输入范围,那么就会使测量结果产生误差,也有可能损坏 A/D 转换器。另外直流量被 A/D 转换器量化成数字量后,在 PSD 里会和参考正弦信号相乘,那么需要更强大的低通滤波器才能滤除,会导致需要更久的测量时间。

当待测信号的频率大于 10Hz 时, 建议使用交流耦合模式。

2.10 固有噪声

噪声

从主观的角度出发,可认为凡是不希望得到或者有碍于准确测量的输入或影响均可称之为噪声。噪声具有瞬时性和不可预知性的随机性。几乎所有测量领域,探测弱信号的最终限制因素都在于噪声。即使要测量的信号并非很弱,噪声的存在也会降低测量精度。某些形式的噪声是无法避免的(例如待测信号的抖动),只有通过信号平均和缩小带宽等技术来克服。而另一些形式的噪声(例如射频干扰和接地回路)可以由很多技术来消除或降低,包括滤波和良好的线路结构和元件布局。同时,放大器本身在工作时也会产生噪声,可以通过低噪声放大器设计技术解决这一问题。

电子系统中存在各种各样的固有噪声源,这些噪声有它们的物理含义。

约翰逊噪声 (Johnson Noise)

任何一种无源器件,其导体中的电子始终在做随机运动,其两端会因此产生一个噪声电压,这就是约翰逊噪声,也称为白噪声或热噪声。它存在于所有电子器件和传输介质中。它受温度变化的影响,但与频率变化无关。从频域上看,热噪声在整个频段具有均匀的功率谱密度,即类似于白色光谱,它不能够被消除的,因此是电子系统性能的上限的影响因素之一。在温度为 T 时,由一个电阻 R 产生的实际噪声电压由下式计算出来:

$$V = \sqrt{4kTRB}$$

其中 k 为玻尔兹曼常数, $k=1.38\times10^{-23}$ J/K,T 是以开尔文为单位的热力学温度(热力学温度与摄氏度的转换关系为: 0 K= 0 C+273.16),B 是以赫兹为单位的带宽。

随后,Nyquist 利用热力学推理以数学方式描述了热噪声的统计特性,并证明了热噪声功率谱函数为

$$St(f) = 4KTR(V^2/Hz)$$

例如,室温下,将一个 10K 电阻接入高保真放大器的输入端,输出端接伏特表,用带宽为 10 kHz 的滤波器来测量它的的开路有效电压,结果为 1.3 uV。

热噪声电压的瞬间幅度在任何情况下一般来说都是不可预见的,但是它遵循高斯分布。 其意义就在于它是任何检波器、信号源或者放大器的噪声电压的下限。源内阻的阻抗部分会 产生热噪声,放大器的偏置和负载电阻也同样如此。

散射噪声(Shot Noise)

电流其实是一股离散的电荷流, 而不是一种真正的流体。 电荷量的有限性导致了电流的

统计性起伏。如果电荷之间互不影响,那么电流的波动就由下式给定:

$$I_{\text{noise}} = \sqrt{2qIB}$$

其中 q 为电子电荷(1.6×10^{-19} C), I 为电路中 RMS 电流值,B 为测量带宽。例如,一个稳定的 1 A 电流,在 10 kHz 范围内测量,其有效值波动为 57 nA,也就是在 0.000,006%上下波动。对于更小的电流,其波动更大:一个稳定的 1 uA 的电流在 10 kHz 范围内测量值的均方电流波动为 57pA,也就是 0.006%的波动。对于 1 pA 的电流,均方电流噪声波动为 56 fA(在同样带宽测量)。也就是 5.6%的波动!

随后证明了散弹噪声电流也是一种白噪声, 其功率谱密度函数为

$$S_{sl}(f) = 2qI(A^2/Hz)$$

前面给出的散射噪声公式是假设电流中的载流子互不影响而得出的。当电荷通过一个势垒时,这种假设确实是存在的,例如面接触型二极管中的电流是以电荷的扩散形式传播的。 但是对于最常见的金属导体来说就不是这样,其载流子之间有着很密切的联系。

1/f 噪声(Flicker Noise)

1925 年,Johnson 在电子管电流中首次发现 1/f 噪声,其突出特点在于该噪声的功率谱函数正比于 1/f。频率越低,噪声越严重,因为又称为低频噪声。其微观机理在于当两种导体接触不理想时,其接触电阻将发生随机涨落,从而引起噪声。

尽管对 1/f 噪声研究已达数十年,然后其适用的情形不一从而有许多的描述模型。其电流幅度满足高斯分布,功率谱密度正比于工作频率的倒数,起功率谱密度函数表示为:

$$S(f) = \frac{KI_d^2}{f} (V^2/Hz)$$

1/f 噪声也叫闪烁噪声(flicker noise),是有源器件中载波密度的随机波动而产生的,它会对中心频率信号进行调制,并在中心频率上形成两个边带,降低了振荡器的 Q 值。由于1/f 噪声是在中心频率附近的主要噪声,因此在设计器件模型时必须考虑到它的影响。

散射噪声和热噪声都是由于物理特性而产生的不可避免的噪声。对于相同阻值的电阻,制作精良的电阻和便宜的炭阻所产生的热噪声完全一样。另外,实际设备都会有各种各样的过量噪声源。实际中的电阻都存在阻值的波动,其结果是产生一个附加的噪声电压(与永久存在的热噪声叠加在一起),其值与流经它的直流电流成正比。这一噪声和很多与电阻构造相关的因素有关,其中包括电阻的材料,特别是封装技术。以纯炭阻,碳膜电阻,金属膜电阻和绕线电阻为例,绕线电阻的噪声最小,金属膜电阻次之,炭膜电阻再次之,纯炭阻最大。

2.11 外部噪声源

内部固有噪声是难以避免的,只有尽可能减少这种噪声的大小。相对于固有噪声而言,外部噪声的形式各种各样,而且绝大多数的噪声源都是异步的。外部噪声源主要通过增加动态储备和时间常数的要求,进而影响了测量的时间。少数的噪声源和参考信号联系紧密,与实际测量信号相加或相减,造成测量结果的错误。幸好,外部噪声源可以通过多种途径尽可

能减少。

电容耦合

由于布线之间总是有互容,互容如同寄生在布线之间的一样,所以叫寄生电容,又称为杂散电容。极板与周围体(各种元件甚至人体)也产生电容联系。而在锁相放大器附近的交流电压信号可以用过这些寄生电容耦合到设备上。虽然寄生电容可能很小,但耦合来的电压信号仍然有可能比待测微弱信号要大。

寄生电容的影响可由以下公式计算出来:

$$I = \omega C_{stray} V_{noise}$$

其中, ω 是噪声频率的 2π 倍, C_{strav} 为寄生电容容值, V_{noise} 是噪声的振幅。

当噪声源频率变大时,耦合噪声将会变大。如果噪声源和参考频率一致,对测量结果的 影响会很大。因为锁相放大器会滤除其他频率的噪声,但是会把与参考频率一致的噪声当作 信号进行测量。

减少电容耦合的方法:

- 移除噪声源,或者尽量把噪声源远离仪器和信号线。
- 设计低阻抗的实验装置,这样耦合的噪声电流就只会产生很小的噪声电压。
- 容性屏蔽,例如将整套实验装置放入金属盒中。

电感耦合

交流电附近会感应出一个磁场,如果放置器件在交流电附近,感应的磁场会耦合到电路中进而影响电路。变化的交流电会产生变化的磁场,变化的磁场感应产生电动势,感应电动势会影响电路的电流电压,进而使实验的测量发生偏差。电动势的大小和磁场变化的频率有关,频率越快,电动势越大,对实验的测量影响就越大。

减少感性耦合的方法:

- 尽可能移除仪器附近的噪声源。
- 使用双绞线或者紧密缠绕的两根同轴电缆线以减小环路效应。
- 对仪器进行磁性屏蔽, 防止磁场进入并穿透测量的区域。

阻性耦合和接地环路

接地环路也会变成一个干扰源,能在传输两端的接地之间产生噪声电压,如果噪声电压足够大,就会导致测量错误。接地环路是系统接地方案中的一个物理环路,产生于电路之间的多个接地途径。这些接地路径可以充当一个大环路天线,从环境中捕获噪声,从而在接地系统中产生电压。工频交流电源的 50Hz 磁场是接地环路捕获的常见噪声源,类似地,对于分布式接地系统,源于某个位置的地电压也能引起地电流在接地环路中流动。由于地为低阻抗,因此噪声电流往往相当大。数百毫伏的噪声可能会引起数安培的电流流过接地环路。

消除接地环路电流的途径:

- 将所有的地连接到同一个点。
- 地总线应尽可能粗,这样可以降低地连接中的阻抗。

• 小信号的接地线上应避免有大电流的接地回路接入。

颤动噪声效应

大部分噪声源都是以电气的形式影响电路,然而机械振动的噪声也可通过颤噪效应转化成为电气形式。因微振动而使传输电缆或者待测信号产生的机械振动,会产生频率变化的电形式噪声。

消除颤噪效应的方法:

- 在测量时.尽可能地减少机械的振动。
- 传输微弱信号的传输线应绑紧固定以减少它们的颤动。
- 用低噪声的电缆来替代普通电缆以减少颤噪效应。

热电偶效应

热电偶效应,指的是两种不同的金属相互接触时在它们之间产生的电势差。产生接触电势差的原因是:(1)两种金属电子的逸出功不同。(2)两种金属的电子浓度不同。若 $A \times B$ 两种金属的逸出功分别为 V_a 和 V_b ,电子浓度分别为 V_a 和 V_b ,则它们之间的接触电势差为

$$V_{ab} = V_a - V_b + \frac{kT}{q} \times \ln\left(\frac{Na}{N_b}\right)$$

其中 k 为玻尔兹曼常数,k =1.38×10⁻²³J/K。T 是以开尔文为单位的热力学温度(热力学温度与摄氏度的转换关系为: 0 K= 0 C+273.16),其中 q 为电子电荷(1.60 x ${}^{10^{-19}}$ C).由上式可得知接触电势数值决定于金属的性质和接触面的温度,因不同金属的功函数(电子逸出金属表面所需的功)不同而产生。

当两种金属接触时,在接触点产生的电动势会在原电平的基础上增加了一个缓慢变化的 毫伏级的电平。这种噪声与温度密切相关,由于温度变化缓慢,因为这种噪声频率也很低。 热电偶效应会随着检测器输出变大而增长,在低频率时影响较大,尤其是 mHz 级别的测量时,影响更大。

消除热电偶效应的方法:

- 测量仪器尽可能保持在恒温状态。
- 使用补偿特性的节点。

2.12 谐波测量

谐波是指周期函数或者周期性波形中能用常数、与原函数的最小周期相同的正弦函数和余弦函数的线性组合表达的部分。根据傅立叶级数的原理,周期函数都可以展开为常数与一组具有共同周期的正弦函数和余弦函数之和。其展开式中,常数表达的部分称为直流分量,最小正周期等于原函数的周期的部分称为基波或一次谐波,最小正周期的若干倍等于原函数的周期的部分称为高次谐波。

OE1201 在同一时间只能测量基频信号或者某个谐波信号分量。

对多谐波的测量设置在[REF/PHASE]子菜单中的<Harmonic>中进行设置。

3. 界面介绍

3.1 前面板

图8. OE1201 前面板

3.1.1 显示屏

OE1201 使用 3.5 英寸 TFT 显示屏作为用户的数据显示与交互控制。显示屏分辨率为 320*240, 有 8 级的背景亮度可供用户选择,可以在[Utility]菜单下的[SYSTEM]子菜单设置。

屏幕的右边区域用于显示当前所处菜单;当菜单处于[Display]时,屏幕左边区域显示输入信号的测量结果;当菜单处于[Display]以外的菜单时,屏幕的左边区域用于显示当前所处菜单下的子菜单:

3.1.2 旋钮

按下旋钮,高亮当前参数或者退出高亮;高亮时旋动旋钮可调整当前子菜单的参数,非高亮时旋动旋钮可选择不同子菜单。

3.1.3 键盘

键盘由 2 组键组成。MENU 区域键盘用于切换 6 种不同的菜单; 旋钮下方的左右按键,则用于调整被高亮的参数。

3.1.4 BNC 连接器

REF IN

参考信号输入可以使用正弦波或 TTL 驱动。正弦波输入时输入阻抗为 1 MΩ, 交流耦合。对于低频应用的情况(<1 Hz), 推荐使用 TTL 驱动的参考信号。

SIGNAL IN

信号输入可以是单端输入 A,也可以是差分输入 A-B,同时输入端 A 也支持电流信号输入。当测量电压信号时,A、B 两个输入阻抗均为 10 M Ω //10 pF;当测量电流信号时,输入通过 1 k Ω 电阻到地。

3.2 后面板

图9. 后面板

OE1201 后面板如图 9 所示,包括散热风扇、电源接口、电源开关、USB 接口、RS232 接口以及 BNC 接口。其中,BNC 接口包括 SINE OUT、CH1&CH2 OUTPUT 和 TTL OUT。

3.2.1 电源接口

电源接口用于整台仪器供电输入,连接 220 V、50 Hz 交流市电,内置保险丝,同时具备滤除高频噪声干扰的滤波器功能。

3. 2. 2 USB

USB 接口允许 OE1201 锁相放大器与 PC 机进行通信。可以通过 PC 机对 OE1201 进行控制和读取数据。

3. 2. 3 RS232

RS232 接口允许 OE1201 锁相放大器与 PC 机进行通信。可以通过 PC 机对 OE1201 进行控制和读取数据。也能够实现其他工控平台对多台 OE1201 锁相放大器进行通信,通过该接口,作为主机工控平台能够读取作为从机的 OE1201 上的数据信息。

3. 2. 4 BNC 连接器

SINE OUT

信号发生器提供最大 1 Vrms 的幅值可编程输出,输出阻抗为 50 Ω。当外部参考信号使用时,信号发生器通过锁相环与输入信号进行锁相。

TTL OUT

TTL OUT, TTL 输出,与 Sine Output 同步,输出阻抗为 200Ω。当正弦波输出幅值很小时,TTL OUT 可用于其他仪器的同步锁定。

CH1&CH2 OUTPUT

CH1&CH2 OUTPUT 输出范围为-5 V 到+5 V。根据当前测量信号的测量结果与当前设置测量范围的比例,正比到输出。

3.3 主界面

OE1201 主界面中可以分为四个部分。

3.3.1 状态栏

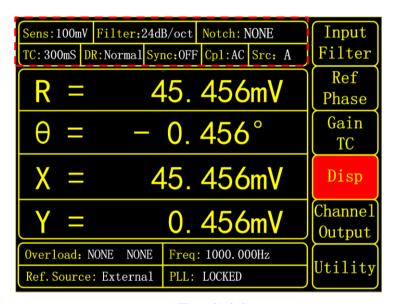


图10. 主界面-状态栏 1

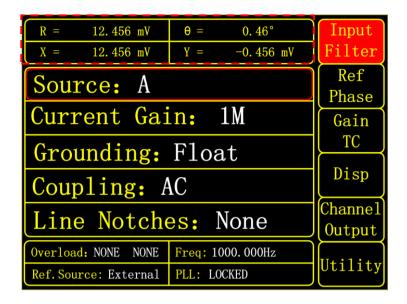


图11. 主界面-状态栏 2

如图 10、图 11 所示,状态栏用于指示当前系统的设置情况和测量的数值,当前菜单为 [Display]时,显示状态栏 1,当前菜单为 [Display]以外的菜单时,显示状态栏 2。状态栏中的 各项指标如下:

<Sens> : 灵敏度值
<Filter> : 滤波器陡降值
<Notch> : 陷波指示
<TC> : 时间常数值
<DR> : 动态储备设置

<Sync> : 同步滤波器指示

<Cpl> : 耦合方式
<Src> : 输入模式
<X> : 输入信号 X 值
<Y> : 输入信号 Y 值
<R> : 输入信号 R 值
<θ> : 输入信号 θ 值

3.3.2 功能栏

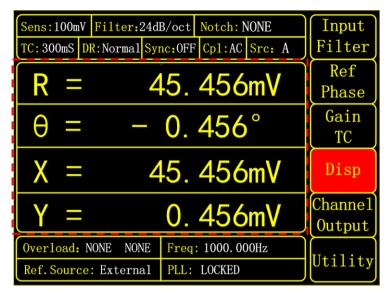


图12. 主界面-功能栏1

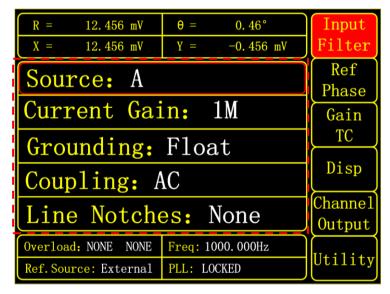


图13. 主界面-功能栏 2

如图 12、图 13 所示,当前菜单为[Display]时,显示功能栏 1,里面显示输入数据测量结果,包括<X>、<Y>、<R>、< θ >值;当前菜单为[Display]以外的菜单时,显示功能栏 2 ,里面显示当前菜单下的子菜单选项。

3.3.3 监测栏

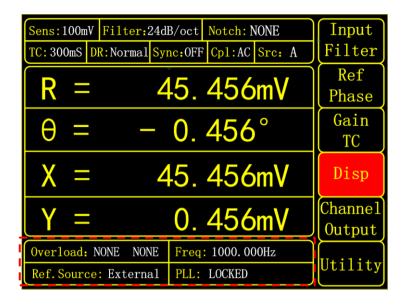


图14. 主界面-监测栏

监测栏一共显示四项内容,包括:

<Overload> : 溢出提示。能够提示前级输入和放大是否溢出。若未发生溢出,则显示:
Overload: NONE NONE; 若前级输入溢出,则显示 Overload: INPUT NONE; 若放大溢出,则显示 Overload: NONE GAIN; 若同时溢出,则显示 Overload: INPUT GAIN。无论哪种溢出,需尽快把输入信号和增益减少以防止对机器造成过压损伤。

<Freg> : 输入信号频率。显示输入信号的频率。

<Ref.Source> : 参考信号。显示选用的参考信号是内部参考还是外部参考。

<PLL>: 锁相环锁相提示。显示相位是否锁定。当锁相环已经锁定,则显示 PLL: LOCKED; 当没有参考信号,或者锁相环未锁定,则显示 PLL: UNLOCKED; 当使用内部参考时,一直显示 PLL: NONE。当<Harmonic>的数值大于 1 的时候,该状态也会提示 HARM 的字样,表明谐波功能被触发了,显示效果: PLL: LOCKED HARM。

3.3.4菜单栏

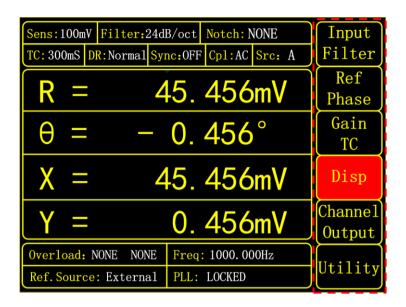


图15. 主界面-菜单栏

如图 15 所示,功能设置框内有 6 种不同的菜单,与前面板 MENU 区域的 6 个按键——对应,在不同的菜单中有不同作用,是控制系统的主要方式。当前所处菜单会被高亮显示。

4. 菜单

OE1201 主菜单位于前面板控制部分的 MENU。MENU 主菜单共分为: [INPUT/FILTERS]、[REF/PHASE]、[GAIN/TC]、[DISPLAY]、[CHANNEL OUTPUT]和[UTLITY]6 个菜单。通过按每个按钮可切换到相应的子菜单界面。

4.1 [INPUT/FILTERS]菜单

在前面板菜单栏中选择[INPUT/FILTERS]进入。如图 16 所示:

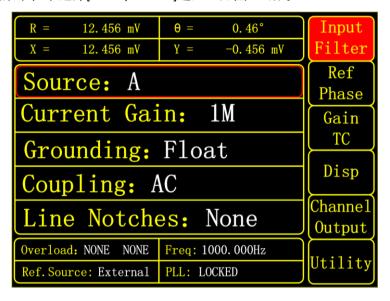


图16. [INPUT/FILTERS]子菜单

此子菜单中包括<Source>、<Current Gain>、<Grounding>、<Coupling>和<Line Notches>五种功能设置:

4.1.1 (Source): 输入模式设置

<A>: 单端电压信号输入模式。

<A-B> : 差分电压信号输入模式。选择此模式时,将双信号的一端由接口 A/I 输入,另一端由接口 B 输入。

<I>: 电流输入模式。

☆当使用电压模式时,输入最大不能超过 1 Vrms。

4.1.2 < Current Gain>: 电流增益设置

<1 M> : 输入为微弱电流信号,放大倍数为 $10^6 V/A$ 。 <100 M> : 输入为微弱电流信号,放大倍数为 $10^8 V/A$ 。

☆无论选择哪种增益,电流转换电压后的信号最大不能超过 1 Vrms。

4.1.3 < Grounding>: 接地设置

<Float>: A、B 输入接口外壳与仪器地通过 1 KΩ 电阻隔离。

<Ground> : A、B 输入接口外壳与仪器地(仪器地已短接在大地---市电 GND 上)通过 10 Ω 电阻短接。

一般认为信号灌入电流的能力不强(不致烧毁仪器接口芯片),或者确保信号地与仪器 地处于同一地电平,可设置为<Ground>,让信号地与系统地短接在一起,防止信号地过于浮 空带来的信号漂动。当信号地与仪器地绝对电势相差较大,且信号地灌入电流能力很强时, 使用<Float>选项,浮空信号地,同时起限流保护作用。

4.1.4 < Coupling>: 耦合设置

<AC>: 交流耦合输入。交流耦合输入用于阻隔输入信号中的直流成分,如果信号频率在 10 Hz 以上建议使用<AC>交流耦合。

<DC> : 直流耦合输入。直流耦合不阻隔任何输入信号,如果信号频率低于 10 Hz 时建议使用<DC>直流耦合。但要注意输入信号的偏置量而导致的信号溢出。

4.1.5 < Line Notches>: 陷波器设置

<None> : 关闭所有陷波器。

<Line> : 开启 50 Hz 陷波器,抑制工频干扰。

<2×Line>: 开启 100 Hz 陷波器,抑制工频二次谐波干扰。

<Both> : 同时开启 50 Hz 和 100 Hz 陷波器,抑制工频和工频二次谐波干扰。

在输入信号频率高于 200 Hz 时,可开启 50 Hz 和 100 Hz 陷波器抑制工频干扰;若输入信号频率低于 200 Hz,建议关闭两个陷波器,以避免陷波器的陡度不够锐利可能引起的幅值损失。

4.2 [REF/PHASE]菜单

在前面板的菜单栏选择[REF/PHASE]进入。如图 17 所示:

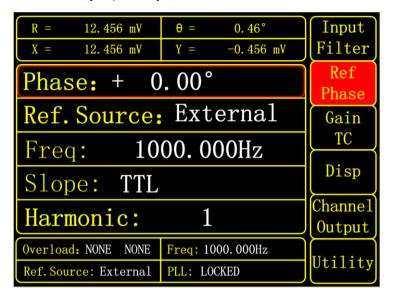


图17. [REF/PHASE]子菜单

此子菜单中包括<Phase>、<Ref.source>、<Freg>、<Slope>、<Harmonic>五种功能设置:

4. 2. 1 〈Phase〉: 参考相位设置

通过数字键盘输入可设置 PSD 算法两路正交参考信号的相移角度,移相精度为 0.01°,输入范围为-180°至+180°。

对于相位,必须有一个基准或者参考才有意义,系统中,我们默认以输入参考信号 REF-IN 经过高精度锁相环锁定相位后的信号为相位基准,其余相位值都是相对于此而言的。

4. 2. 2 < Ref. Source>: 参考信号源设置

<External> : 外部参考信号。OE1201 将与 REF-IN BNC 输入的参考信号进行锁相。此时的界面如图 17 所示,可以对<Slope>进行设置。

<Internal>: 内部参考信号。此设置下参考信号将根据信号发生器的产生的信号作为 参考信号。REF-IN BNC 输入信号将不起作用。

4.2.3 〈Freq〉: 内部参考信号频率设置

当<Ref.Source>选择<Internal>时此项有效,可输入的频率范围为 50 mHz 到 120 kHz, 默 认 1.000 kHz。频率设置可以通过旋钮与方向按键配合输入,频率分辨率最小为 1 mHz。

4. 2. 4 < Slope>: 外部参考信号类型设置

当<Ref.Source>选择<External>时此项有效,根据外部参考信号的类型选择对应的信号类型。

<TTL> : 外部输入信号为方波时选择此项。 <Sine> : 外部输入信号为正弦波时选择此项。

当输入参考信号为 TTL 逻辑电平时,建议选择 TTL 触发。应当注意,当输入 REF IN 的参考信号虽然是方波,但电平值不满足 TTL 逻辑高低电平阈值条件时,可能得不到稳定的触发,此时可能得不到预期的测量结果,故此时推荐选用 SINE 触发。此外,对特别低的频率(<1 Hz)时,需使用 TTL 参考。

当输入 REF IN 的参考信号为正弦信号时,建议选用该 SINE 触发。SINE 触发是在系统内部对 REF IN 输入进行精密整形后再检测频率、相位信息。

另外,无论是<TTL>触发还是<SINE>触发,系统对其信号占空比(Duty Cycle)没有要求,但推荐使用常规50%占空比为宜。

4. 2. 5 < Harmonic >: 谐波检测设置

OE1201 可以进行谐波测量。通过在<Harmonic>子菜单中设置谐波的阶数谐波测量。 <Harmonic>: 谐波设置,最小值 1,最大值 32767(谐波频率不超过 120kHz)。

通过旋钮与左右按键配合输入所需测量的谐波阶数,默认显示 1,表示检测 1 阶谐波(即基波)。<Harmonic>谐波阶数设置的限制是(Harmonic * Freq)<= 120 kHz,其中 Freq 表示参考信号频率。一旦超过限制,系统会把谐波阶数固定不能继续增加。

例如输入信号是频率为 1kHz 的方波时,假定它的峰峰值为 A,设置<Harmonic>值分别为 1、3、5、7......时,将预期得到 R 值为 0.45A、0.15A、0、0.09A、0.064A.....,而这个序列正是方波信号傅立叶级数的系数序列的 A 倍。

4.3 [GAIN/TC]菜单

在前面板的 MENU 菜单栏选择[GAIN/TC]子菜单进入,如图 18 所示:

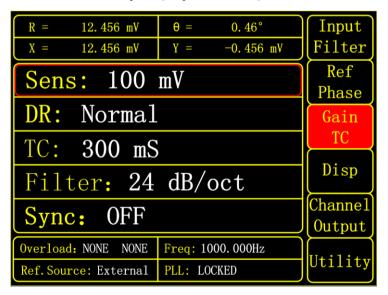


图18. [GAIN/TC]子菜单

此子菜单中包括<Sens>、<DR>、<TC>、<Filter >和<Sync>五种功能设置:

4.3.1 <Sens>: 满偏灵敏度设置

根据输入信号的大小选择合适的满偏灵敏度,通过重复按软键或旋钮调节数值。满偏灵敏度表如表 3 所示:

100. 44 Hill 20 42/200				
2 nV/fA	500 nV/fA	100 uV/pA	20 mV/nA	
5 nV/fA	1 uV/pA	200 uV/pA	50 mV/nA	
10 nV/fA	2 uV/pA	500 uV/pA	100 mV/nA	
20 nV/fA	5 uV/pA	1 mV/nA	200 mV/nA	
50 nV/fA	10 uV/pA	2 mV/nA	500 mV/nA	
100 nV/fA	20 uV/pA	5 mV/nA	1 V/uA	
200 nV/fA	50 uV/pA	10 mV/nA		

表3. 满偏灵敏度表

改变<Sens>会改变系统的动态范围,同时也会影响到对 CH1 & CH2 的输出。当测量信号为电流信号时,满偏灵敏度为相应的电流单位。系统默认为<100 mV/nA>。

4. 3. 2 <DR>: 动态储备设置

<Low>: 动态储备设置为低。 <High>: 动态储备设置为高。 <Normal>: 动态储备设置为普通。

对于一般情况下的测量时,使用<Normal>即可。

4.3.3 <TC>: 时间常数设置

时间常数设置范围为 10 us 到 3000 s,通过左右按键或旋钮调节数值,时间常数表如表 4 所示:

10 us	3 ms	1 s	300 s
30 us	10 ms	3 s	1000 s
100 us	30 ms	10 s	3000 s
300 us	100 ms	30 s	
1 ms	300 ms	100 s	

表4. 时间常数表

时间常数越长,等效噪声带宽越小,系统测量响应的时间越长,测量的精度也越高。

4.3.4<Filter>: 低通滤波器陡降设置

<6 dB/oct> : 一阶低通滤波器,陡降 6 dB/oct。
<12 dB/oct> : 二阶低通滤波器,陡降 12 dB/oct。
<18 dB/oct> : 三阶低通滤波器,陡降 18 dB/oct。
<24 dB/oct> : 四阶低通滤波器,陡降 24 dB/oct。

在同样的测量准确度下,使用更高的滤波器陡降可以降低时间常数,使得测量响应更快。 具体的时间常数和滤波器陡降搭配,必须根据实际情况来选择,一个判定的准则是只要对测

量结果的稳定度满意,此时的时间常数和滤波器陡降就不需要设置太大,以免等待时间过长。当然,若想结果更加平稳,可以适当增大时间常数和滤波器陡降。

4. 3. 5 < Sync>: 同步滤波器设置

<OFF>: 关闭同步滤波器。

<20 Hz> : 开启同步滤波器。当信号频率低于 20 Hz 时开启该功能才会起到同步滤波的作用。低通滤波器在输入信号频率较低时无法或需长时间才能得到稳定的结果,此时可借助于此同步滤波器改善效果。

同步滤波器可以有效去除参考频率及其倍频的信号,降低对低通滤波器的要求。

☆注: 同步滤波器开启时, <Filter db/oct> 必须为<18 dB/oct >或<24 dB/oct >才能真正 起作用!

4.4 [DISPLAY] 菜单

在前面板的 MENU 菜单栏选择[DISPLAY]进入, 如图 19 所示:

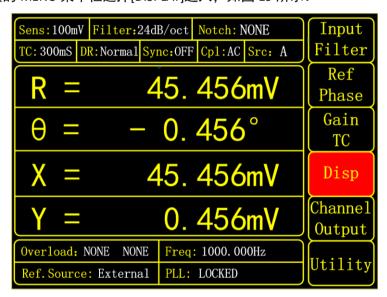


图19. [DISPLAY]子菜单

进入[DISPLAY]菜单后在功能栏将显示输入数据测量的结果,包括<R>、<θ>、<X>、<Y>值。

4.5 [CHANNEL OUTPUT]菜单

在前面板的 MENU 菜单栏选择[CHANNEL OUTPUT]进入,如图 20 所示:

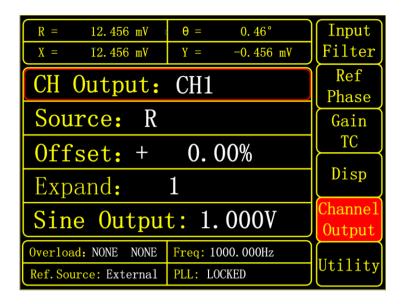


图20. [CHANNEL OUTPUT]子菜单

[CHANNEL OUTPUT]子菜单控制后面板上的 SINE OUT 输出幅值, CH1 和 CH2 输出用户需要的 R、X、Y 和 θ 值,以及通过<Offset&Expand>设置输出的偏置与放大倍数。

CH1 和 CH2 输出信号的计算公式如下:

1、当选择信号为<R>, <X>, <Y>时:

输出 =
$$\left(\frac{\text{Signal}(选择信号)}{\text{Sens}} + \text{Offset}\right) \times \text{Expand} \times 5\text{V}$$

2、 当选择信号为<θ>时:

输出 =
$$\frac{\text{Signal}(选择信号)}{180^{\circ}} \times 5V$$

4.5.1 < CH Output>: 输出通道设置

<CH1> : 设置当前配置通道为 CH1。 <CH2> : 设置当前配置通道为 CH2。

4.5.2 <Source>: 输出通道源设置

<X> : 设置当前通道输出X值对应的模拟电平。
<Y> : 设置当前通道输出Y值对应的模拟电平。
<R> : 设置当前通道输出R值对应的模拟电平。
<0> : 设置当前通道输出0值对应的模拟电平。

4.5.3 < Offset >: 偏置设置

通过旋钮与左右按键输入,可调范围是-100%~ +100%, 其中最小步进为 0.01%, 默认 0.00%。其中 CH1 和 CH2 各自对应了一个偏置值。

4. 5. 4 <Expand>: 放大设置

通过旋钮与左右按键输入,可调范围是 1~256, 默认值为 1。其中 CH1 和 CH2 各自对应了一个放大值。但 Expand 的设置使得计算超出了±5V 的时候,将使结果保持在±5V,不会超出最大输出范围。

注意: <Offset>与<Expand>的设置不会影响动态区域数据框内的数据显示。

4.5.5 < Sine output>: 正弦信号输出设置

OE1201 可通过后面板的"SINE OUT"BNC 接头输出幅值由 0 V 到 1 Vrms 的正弦波信号,当使用<External>外部参考时,<Sine Output> 提供一个与外部参考锁相的正弦信号;当使用 <Internal>内部参考时,将由 OE1201 自身的振荡器产生。同时后面板上"TTL OUT"的 BNC 头将输出与<Sine Output>同步的 TTL 信号。

正弦信号输出幅值设置,通过旋钮与左右按键输入,范围 $0.100 \text{Vrms} \sim 1.000 \text{Vrms}$ 有效值,最小分辨率为 0.001 Vrms。

4.6 [UTILITY] 菜单

在前面板的 MENU 菜单栏选择[UTILITY]进入,如图 21 所示:

图21. [UTILITY]子菜单

此子菜单中包括<StoreRecall>、<USB>、<RS232>、<System>和<Info>5 个子菜单设置,可通过旋钮选择及旋钮的点击进入各自的菜单设置。

4.6.1 〈StoreRecall〉: 保存和读取参数设置子菜单

在[UTILITY]中选择<StoreRecall>进入,如图 22 所示:

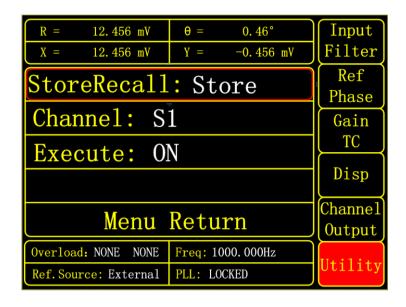


图22. [StoreRecall]子菜单

此子菜单中包括<StoreRecall>、<Channel>和<Execute>三种功能设置:

<StoreRecall>: 保存或读取设置

<Store> : 当前操作为保存设置。 <Recall> : 当前操作为读取设置。

<Channel>: 存档序号

<S1> : 第1个存档。
<S2> : 第2个存档。
<S3> : 第3个存档。
<S4> : 第4个存档。

<Default>: 默认存档,即 OE1201 的默认设置,仅在读取操作时有效。

<Execute>: 执行设置:

<YES> : 执行当前设置(当设置执行完成后会自动切换回不执行状态)。

<NO>: 不执行当前设置。

<StoreRecall>菜单主要用来保存(Store)和读取(Recall)已经设定的参数和状态。根据用户个人的喜好,可以在项中保存为 <S1>, <S2>, <S3> 和 <S4> 四个存档。如图 22 所示,选择<Save>, <Channel>选择<S1>, 再选择 <Execute >项中的 <YES>, 即可将当前设定的参数和状态保存在 <S1>存档。需要读取该存档,只需选择<Recall>, <Channel>选择<S1>, 再选择 <Execute> 项中的 <YES> 即可。

4. 6. 2 < USB>: USB 串口通信设置子菜单

在[UTILITY]中选择<USB>进入,如图 23 所示:

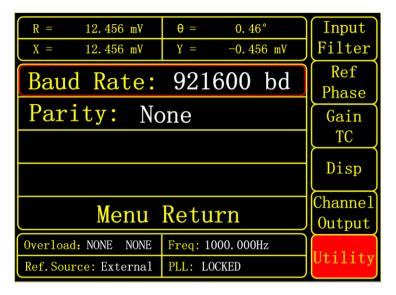


图23. [USB]子菜单

此子菜单中包括<Baud Rate>、<Word Length>和<Parity>三种功能设置:

<Baud Rate>: 波特率设置

通过重复按对应软键或旋钮调节波特率,数值可设置为: <600>、<1200>、<2400>、<4800>、<9600>、<19200>、<38400>、<43000>、<57600>、<115200>、<230400>、<380400>、<460800>、<921600>。默认为波特率<921600>。

<Parity>: 奇偶校验设置

<Even> : 偶 <ODD> : 奇 <NONE> : 无

4. 6. 3 <RS232>: RS232 通信设置子菜单

在[UTILITY]中选择<RS232>进入,如图 24 所示:

图24. [RS232]子菜单

此子菜单中包括<Baud Rate>、<Parity>和<Remote>三种功能设置:

<Baud Rate>: 波特率设置

通过重复按对应软键或旋钮调节波特率,数值可设置为: <600>、<1200>、<2400>、<4800>、<9600>、<19200>、<38400>、<43000>、<57600>、<115200>、<230400>、<380400>、<460800>、<921600>。

<Parity>: 奇偶校验设置

<Even> : 偶 <ODD> : 奇 <NONE> : 无

<Remote>: 主从机设置

<Master>: 设置为主机。
<Slave> : 设置为从机。

该功能方便用户实现两台仪器间的级联功能, 当两台仪器级联可以通过一条串口线进行连接, 能够实现从主机读取从机的数据, 然后同时把主从机的参数返回给上位机。

在从机状态,用户可以通过 RS232 接口与上位机进行通信,所使用的指令格式在"远程编程"章节有详细介绍。

主机跟从机的指令区别:主要是从机需要在标准命令格式结尾加上一个"S"字符,同时从机的"Remote"设置必须设置为"Slave"选项。

注意:通过 USB 接口与上位机通信(OE1201 数字锁相放大器控制平台及串口调试助手)的时候,必须让 "Remote"项设置为 "Master"选项,才能使能 USB 的接口调试功能。

4. 6. 4 < System>: 系统设置子菜单

在[UTILITY]中选择<System>进入,如图 25 所示:

图25. [System]子菜单

此子菜单中包括<Beep>、<Color>和<Backlight>两种功能设置:

<Beep>: 蜂鸣器设置

<ON>: 蜂鸣器开。<OFF>: 蜂鸣器关。

<Color>: 界面色调设置

<Style1> : 界面主色调为黄色。
<Style2> : 界面主色调为绿色。

<Backlight>: 背光亮度设置

通过旋钮调节,亮度等级可从<Level1>调节至<Level8>。

4. 6. 5 < Info>: 信息查看子菜单

在[UTILITY]中选择<Info>进入,界面显示 OE1201 的版本信息、序列号以及研发单位的联系方式,如图 26 所示:

图26. [Info]子菜单

5. 远程编程

5. 1 0E1201 命令语法

上位机与 OE1201 的通信使用 ASCII 字符来进行。命令符使用大写,所有命令均由四个命令字符(如有必要可带上参数)和一个命令终结符组成。当使用 RS232 转 USB 接口通信时,终结字符必须是一个换行符<lf>或回车符<cr>。OE1201 只有在收到命令终结符时,才会执行用户输入的命令。命令可能需要一个或多个参数,多个参数之间用逗号分隔(,)。

多个命令可以在同一命令行发送,但命令之间需要添加分号(;)。在同一行发送多个命令和分别发送几个独立命令的区别在于:当一个命令行被解析和执行时,在整个命令行执行完成之前,OE1201 无法执行其他命令。

OE1201 有一个能同时存储 50 条指令的输入缓存区,并会根据接收命令的顺序来处理命令。当缓存区写满时,会存在出错的可能,请合理分配命令。

OE1201 允许用户通过命令查询内部参数的当前值。查询命令的格式为由当前命令后加上一个问号"?"并省略原命令所需的一个或多个参数。OE1201 以 ASCII 字符串的形式返回用户所查询的参数,如果一个命令行中发送多个查询(用分号隔开)的话,应答将会一个一个地返回,每个都对应一个终结符。

当在级联状态下,上位机与从机的通信要必须在标准命令格式的结尾加上一个"S"字符。

主从机设置请参考[UTILITY]菜单中的[RS232]中的 Remote 选项。 命令格式举例:

FMOD 1 <cr></cr>	设置主机参考源为内部参考
FMOD 1 S <cr></cr>	设置从机参考源为内部参考
FREQ 10E3 <cr></cr>	设置主机内部参考信号频率为 10 kHz
FREQ 10E3 S <cr></cr>	设置从机内部参考信号频率为 10 kHz
OUTP? 1 <cr></cr>	查询主机通道 1 的输出值
OUTP? 1 S <cr></cr>	查询从机通道 1 的输出值

5.2 详细的命令列表

每一个命令所指定的参数是有严格顺序的,不同参数之间用逗号(,)分隔。在大括号{}里面的参数是可选的,不需要每个都填写。只有在命令后面加上(?)的助记符时,才会启动查询命令,没有(?)是不会查询的。注意:在发送命令时()和{}都不需要发送。

变量定义如下:

i,j,k,l,m,n,o,p,q,r,s,t,u	整数
x	实数
f	频率值

以上所有的数值变量均可以被表示为整数、浮点数或指数格式(例如,数字 5 可以表示为 5,5.0,.5E1)。而字符串则被作为一个 ASCII 字符序列的形式发送。

5. 2. 1 参考与相位指令

	·
	PHAS 指令用于设置或查询参考相移。参数 x
	是指相位值(实数值,单位:°)。用 PHAS x 命令可
	以设置当前的相移值为 x°。
PHAS (?) {x}	x 的值会被四舍五入到 0.01°。相位限制在
	±180°。例如,发送 PHAS -179.0 这条指令会设置
	OE1201 的相移值为-179.00°。而指令 PHAS?则是发
	送查询指令。
EMOD (2) (:)	FMOD 指令用于设置或查询参考信号源。参数
FMOD (?) {i}	i=0 时选择外部参考,i=1 时选择内部参考。
	FREQ 指令用于设置或查询内部参考信号的频
FREQ (?) {f}	率。指令 FREQ?会返回当前的参考信号频率(内部
	或外部)
	当使用外部参考源时, RSLP 指令用于设置或查
	询参考信号当前的触发方式。
RSLP (?) {i}	参数 i=0 时设置 <ttl>上升沿触发;i=1 时设置</ttl>
	正弦波过零检测 <sine>。当频率低于1Hz时,必须</sine>
	使用 <ttl>触发方式。</ttl>
	HARM 指令用于设置或查询谐波检测。
HARM (?) {i}	参数 i 可以设置为 1 到 32767 之间的整数。
	HARM i 指令将会设置 OE1201 检测输入参考频率的
	i 次谐波。参数 i 必须满足 i * f ≤120 kHz。如果 i 次
	谐波的值大于 120 kHz, 那么谐波次数 i 会被自动设
	置为满足条件 i * f ≤ 120 kHz 的 i 的最大值。

5.2.2 输入与滤波器指令

	ISRC 指令用于设置或查询输入信号的方式。
	参数 i=0 时选择 A(单端电压信号输入); i=1
ISRC(?){i}	时选择 <a-b>(差分电压输入); i=2 时选择<1</a-b>
	MΩ>(电流输入,放大倍数 10 ⁶ V/A); i=3 时选择<100
	MΩ>(电流输入,放大倍数 10 ⁸ V/A)。
	IGND 指令用于设置或查询输入接地方式。
	参数 i=0 时选择 <float>模式(输入接头外壳</float>
IGND(?){i}	与仪器地通过 10kΩ 电阻隔离); i=1 时选择
	<ground>模式(输入接头外壳与仪器地通过 10 Ω</ground>
	电阻短接)。
	ICPL 指令用于设置或查询输入耦合方式。
ICPL(?){i}	参数 i=0 时选择 <ac>(交流耦合输入);i=1 时</ac>
	选择 <dc>(直流耦合输入)。</dc>
	ILIN 指令用于设置或查询陷波器的开启或关
	闭状态。
ILIN(?){i}	参数 i=0 时选择关闭陷波器;i=1 时选择开启
	50 Hz 陷波器;i=2 时选择开启 100 Hz 陷波器;i=3
	时选择同时开启 50 Hz 和 100 Hz 陷波器。

5.2.3 灵敏度和时间常数指令

	CENC 指公田干设署市本语	a SS统的显敏度/cancitivity// 参	
	SENS 指令用于设置或查询系统的灵敏度 <sensitivity>。参数 i 用于选择不同的量程</sensitivity>		
	参数 i 的选择具体如下:		
		i consitiuit.	
	i sensitivity	i sensitivity	
	0: 2 nV/fA	14: 100 uV/pA	
	1: 5 nV/fA	15: 200 uV/pA	
	2: 10 nV/fA	16: 500 uV/pA	
	3: 20 nV/fA	17: 1 mV/nA	
SENS (?) {i}	4: 50 nV/fA	18: 2 mV/nA	
	5: 100 nV/fA	19: 5 mV/nA	
	6: 200 nV/fA	20: 10 mV/nA	
	7: 500 nV/fA	21: 20 mV/nA	
	8: 1 uV/pA	22: 50 mV/nA	
	9: 2 uV/pA	23: 100 mV/nA	
	10: 5 uV/pA	24: 200 mV/nA	
	11: 10 uV/pA	25: 500 mV/nA	
	12: 20 uV/pA	26: 1 V/uA	
	13: 50 uV/pA		
		`/ 	
RMOD (?) {i}		询动态储备模式。参数 i=2 时选	
	择 <low>; i=1 时选择<normal< td=""><td><u> </u></td></normal<></low>	<u> </u>	
	OFLT 指令用于设置或查询	间滤波器的时间常数。参数 i 用于	
	选择不同的时间常数.		
	参数 i 的选择具体如下:		
	i time constant	i time constant	
	0: 10 us	9: 300 ms	
	1: 30 us	10: 1 s	
OFLT (?) {i}	2: 100 us	11: 3 s	
() ()	3: 300 us	12: 10 s	
	4: 1 ms	13: 30 s	
	5: 3 ms	14: 100 s	
	6: 10 ms	15: 300 s	
	7: 30 ms	16: 1000 s	
	8: 100 ms	17: 3000 s	
	OFSL 指令用于设置或查询	OFSL 指令用于设置或查询低通滤波器的滚降。	
OFSL (?) {i}	参数 i=0 时选择<6 dB/oct>; i=1 时选择<12 dB/oct>; i=2		
	时选择<18 dB/oct>; i=3 时选择<24 dB/oct>。		
	SYNC 指令用于设置或查询同步滤波器的开关状态。一般		
	· · ·	· · · · · · · · · · · · · · · · · · ·	
SANC (5) {!}	SYNC 指令用于设置或查证	甸同步滤波器的开关状态。一般	
SYNC (?) {i}	SYNC 指令用于设置或查证 当参考频率低于 20 Hz 时需要	甸同步滤波器的开关状态。一般	

5. 2. 4 通道输出指令

	T		
	FPOP i 指令用于设置或查询 OE1201 后面		
	板的输出通道。		
		参数 i 必须设置, i=1 时选	
	择 CH1(输出通道一)); i=2 时选择 CH2(输出	
	通道二)。参数 j 用于	选择输出值的类型.	
	参数 j 的选择具体	本如下:	
FOUT (?) i {, j}	CH1(i=1)	CH2(i=2)	
	j 输出类型	j 输出类型	
	0 R	0 R	
	1 X	1 X	
	2 Y	2 Y	
	3 θ	3 θ	
	OEXP i 指令用于i	设置或查询直流输出通道	
	的偏置和放大倍数。	发送该指令时参数 i 必须	
	设置,参数 i 用于选择直流输出通道。i=1 时选		
	•); i=2 时选择 CH2(输出	
	通道二)。		
	参数 i 的选择具体如下:		
	i Parameter		
	1	CH1	
	2	CH2	
	参数 x 用于设置偏置值, 范围是(-100.00≤x		
OEXP (?) i {, x, j}	≤100.00)%.参数 j 用于设置输出放大倍数, 范围		
	是(1≤x ≤256)。		
	例如发送指令 OEXP 2,50.00,2 会设置参数		
	值 <y>的偏置为 50%,输出放大倍数为 2 倍。</y>		
	该指令中 x 和 j 值都需要发送。		
	指令OEXP?i用于查询i对应参数值的偏置		
	值和放大倍数。返回的字符串包括偏置值和放		
	大倍数,两者以逗号(,)分隔开。例如,发送指		
	令 OEXP? 2 后返回字符串为"50.00,10", 那么表 示参数 <y>的偏置为50.00%, 放大倍数是10倍。</y>		
	小多数 <y>的個直內5</y>	U.UU%, 放入	
	SIVI 指今用于识		
	SLVL 指令用于设置或查询输出的正弦波(Sine output)的幅度		
CIVI (2) (~)	(Sine output)的幅度。 参数、指有效值由压(实数值、单位、V)		
SLVL (?) {x}	参数 x 指有效值电压(实数值,单位: V)。		
	x 的值会被四舍五入到 0.001 V。参数 x 必须满		
	足 0.100 ≤x ≤1.000。		

5.2.5 保存读取设置指令

	SSET i 指令用于把 OE1201 当前的设置保			
	存到设置缓存区中,即 Setting buffer i(1≤i≤4)。			
	参数 i 的选择具体如下:			
	i	Setting buffer		
	1	S1		
SSET i	2	S2		
	3	S3		
	4	S4		
	Setting buffer 里	Setting buffer 里面的配置信息在 OE1201		
	断电后可保存,用于下次开机时使用。			
	DCFT : 比人田	工法即(5世)。		
	RSET i 指令用于读取 Setting buffer			
	i(1≤i≤5,其中 5 表示默认设置)里的设置。读取			
	成功后, OE1201 内部参数将会被设置成与			
	Setting buffer i 里面相同的参数。			
	参数 i 的选择具体如下:			
RSET i	i	Setting buffer		
RSELL	1	S1		
	2	S2		
	3	S3		
	4	S4		
	5	Default		

5. 2. 6 数据读取指令

	OUTP ? i 指令用 ⁻	于读取单个参数值。参数 i		
	对应于下表:			
	参数 i 的选择具体如下:			
	j	Parameter		
	1	Х		
	2	Υ		
OUTP?i	3	R		
	4	θ		
	5	Freq		
	所选参数的值以 ASCII 浮点数的格式返回,			
	以伏特(V)、度(°)或赫兹(Hz)为单位。该指令仅			
	用作查询。			
	RALL?指令用于读取 5 个参数值, 其返回顺			
	序是 X,Y,R,θ,Freq;参数的值以 ASCII 浮点数的格			
RALL?	式返回,以伏特(V)、度(°)或赫兹(Hz)为单位,			
	每个参数之间用逗号	隔开。该指令仅用作查询。		

5. 2. 7 状态读取指令

	RSTU?指令用于读取 OE1201 的 overload 与锁定状态,其返回状态的顺序为: gain overload状态, input overload 状态, 锁定状态, 它们的返回值对应的状态如下表所示:		
RSTU?	状态	返回值	返回值
	gain overload	0: Overload	1: None
	input overload	0: Overload	1: None
	Lockin	0: Unlock	1: Locked
	该指令仅用作	作查询 。	

5. 2. 8 IDN 指令

IDN ?指令用于查询 OE1201 的 ID,格式
为"SSI LIA-OE1201, SNXXXXXX, VerXXX"。
其中第一个为型号,如 OE1201;第二个为
序列号,如 SN00001;第三个为硬件版本号,
如 Ver1.00。

6. PC 软件安装使用说明

6.1 软件安装

我们一般都是以光盘的形式把 PC 机软件提供给用户的。打开光盘后有如下文件,如图 27 所示:

图27. 光盘内 PC 软件包

第一步:

首先要安装串口转 USB 驱动, 打开图 27 中的第 3 个文件夹"串口驱动", 如图 28 所示:

图28. "串口驱动"文件夹

双击打开图 28 红色方框内的"FT232_drive.exe"文件,则会弹出如图 29 的软件窗口,见到以下界面时表示正在安装串口转 USB 的驱动,只需要等待几分钟即可。

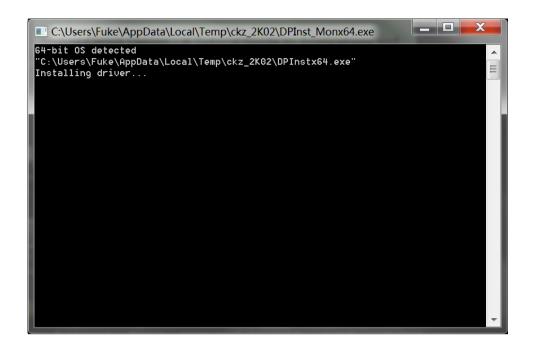


图29. FT232 driver 安装界面

若 FT232 驱动安装成功后,会出现如图 30 的提示,此时只需要按照提示按下"回车"键即可完成该驱动的安装:

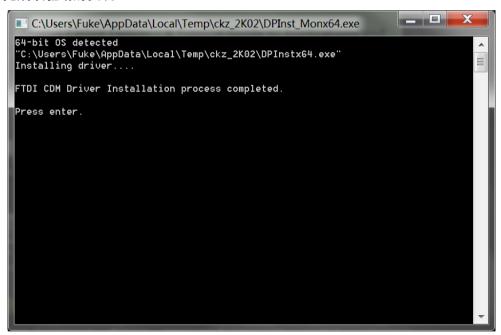


图30. TF232 driver 安装完成提示

此时,使用 USB 线连接 PC 机和锁相放大器,则可自动识别连接成功。

- 注意: 1.如果 PC 机已经联网, 当插上 USB 连接 PC 与锁相放大器时, 会自动联网搜索驱动并进行安装。
 - 2.如果 PC 机已安装有串口转 USB 的驱动,则可跳过该步。
 - 3.如果安装不成功,则可根据"串口驱动"目录下的说明文件"readme.txt"里面的解决方法,使用 inf 文件进行安装。

第二步:

如果 PC 本地没有安装 NI LabView 2011 或更新的版本,并且没有安装对应的 VISA 驱动的话,则需要安装图 27 中第 2 个文件夹内的驱动,打开"OE1201 软件驱动",如图 31:

修改日期	类型
2015/9/6 20:31	文件夹
2015/9/6 20:31	文件夹
2015/9/6 20:31	文件夹
2014/9/22 16:31	ID 文件
2013/5/6 17:01	应用程序
2014/9/22 16:31	Configuration
	2015/9/6 20:31 2015/9/6 20:31 2015/9/6 20:31 2014/9/22 16:31 2013/5/6 17:01

图31. "OE1201 软件驱动"文件夹

双击打开上图中红色方框内的"setup.exe"安装文件,开始安装 OE1201 PC 软件的使用环境驱动,一般情况下根据默认选项安装就可以了。

注意: 安装成功后,需要重启电脑,以完成软件环境的配置。

第三步:

若前面的安装步骤都确定没有问题后,用户则可打开图 27 中的第1个文件夹"OE1201";该文件包含了英文版和中文版的应用软件,Windows 7/XP 系统下都能正常运行。

打开图 27 中的第 1 个文件夹"OE1201", 有以下文件:

图32. "OE1201"文件夹

双击打开图 32 中红色方框内的"OE1201_Console_CH.exe"文件,如前面的安装无误,则会弹出以下软件窗口,此时可以在 PC 机上开始进行锁相放大器的参数配置:

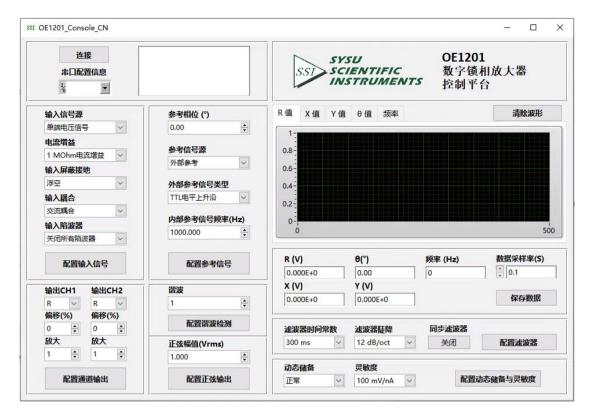


图33. OE1201 软件界面

注意: 如果 PC 机已安装有 NI LabView 2011 或以上版本,并且安装有对应 LabView2011 版本的 VISA 驱动,则只需要安装好串口驱动(第一步)后,再直接进行第三步就可以使用锁相放大器的配置软件进行相关参数设置了。

6.2 软件使用说明

前面所示的图 33 是锁相放大器 OE1201(以下简称 OE1201) 当前版本的 PC 机配置软件的界面。

6. 2. 1 软件运行

连接中... 串口配置信息 示" ^{※ASRL6}: ▼ "则表示软件

> 连接 串口配置信息

如图 34 的左边部分所示, 为图 33 左上角的部分, 若显示"

正在运行。此时若点击按钮"<mark>连接中...",则停止当前软件,该部分变为"¹¹⁸",</mark>表示当前软件没有运行,如图 34 右边部分所示。再次点击"<mark>连接</mark>"按钮,此时软件又开始运行。

图34. 程序运行(左图)与程序停止(右图)

注意:连接前必须先确认 OE1201[UTILITY]菜单中的[USB]中的 Baud Rate 选项设置成 921600bd。 以及[UTILITY]菜单中的[RS232]中的 Remote 选项设置成 Master。

6. 2. 2 PC 机与 0E1201 连接

要使用该软件正确地配置 OE1201, 首先需要完成 PC 机和 OE1201 的正确连接。图 35 所示为软件界面中显示当前连接状态的部分:

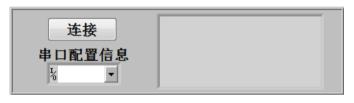


图35. 当前连接状态

如图 35 所示, 点击左边的连接选项"连接",软件会自动搜索串口资源,若 PC 机和 OE1201 连接成功,此时下方窗口会显示 OE1201 的版本号信息,如图 36 所示:

图36. 连接成功图

若等待几秒后,弹出如图 37 所示的提示框,则表示 PC 机与 OE1201 连接异常。

图37. 搜索设备失败提示框

再次确认设备连接正确后,点击提示框中"确定"按钮,此时连接状态右方窗口会显示出错信息,如图 38 所示:

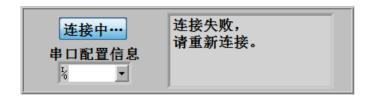


图38. 连接错误图

此时有两种方法可以重新连接:

(1) 点击"串口配置信息"选项右边的"[▶]",在弹出的下拉菜单中点击"刷新"则可以显示出当前 PC 机所连接的全部外部 COM 资源,用户需要选择正确的 COM 口来进行 PC 与 OE1201 的连接。

注意:当 PC 机使用 USB 线连接 OE1201 时,可以在电脑的设备管理器里确定当前的连接使用的是哪个 COM 口,具体操作步骤是:选择"我的电脑"->右键->属性->设备管理器->查看"端口(COM 和 LPT)"。

若 COM 端口选择正确, 等待几秒后, 连接状态会更新为图 36 所示, 连接成功。

(2)点击"连接中..."按钮,使其变为"连接",此时可再次点击"连接"按钮,重复上述连接操作,直到连接成功。

当连接成功后,如图 39 所示,红框内窗口内容将清空并重新开始显示数值,默认窗口显示 R 值, 在红框中上方位置可以选择显示 $X_{\chi}Y_{\chi}\theta$ 或频率值。同时, 软件界面将显示 OE1201 当前配置的各项参数。

图39. OE1201 软件连接成功

6.2.3 输入信号配置

输入信号的软件配置区域如图 40 红框内所示:

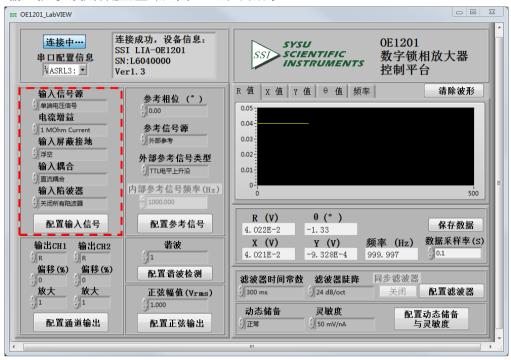


图40. 输入信号的配置区域图

可供用户配置的选项如下表 5:

表5. 输入信号配置选项表

Single-Ended Voltage			
单端电压信号			
Differential Voltage			
差分电压信号			
Current			
电流信号			
1 MOhm Current Gain			
输入为微弱电流信号时,放大倍数 10E6 V/A			
100 MOhm Current Gain			
输入为微弱电流信号时,放大倍数 10E8 V/A			
Float			
浮空			
输入接头地与仪器地(仪器地已短接在大地			
市电 GND 上)通过 10 KΩ 电阻隔离			
Ground			
接地			
输入接头地与仪器地通过 10 Ω 电阻短接			
AC			
交流耦合			

	DC	
	直流耦合	
	None	
Input Notch Filter 输入陷波器设置	关闭所有陷波器	
	Line Notch	
	开启 50 Hz 陷波器,抑制工频干扰	
	2x Line Notch	
1111八四次前以且	开启 100Hz 陷波器,抑制工频干扰	
	Both Notch Filters	
	开启所有陷波器,抑制工频和工频二次谐波	
	干扰	

注意:

- 1. 当选择好需要的设置后,需要点击"配置输入信号",以完成输入信号的配置;全部设置都可同时更改,只需点击一次"配置输入信号"即可。
- 2. 每次重新修改其中的设置后,都需要点击该按钮以完成配置,否则设置无效。

6.2.4参考信号及相移配置

该项参数的软件配置区域如图 41 红框内所示:

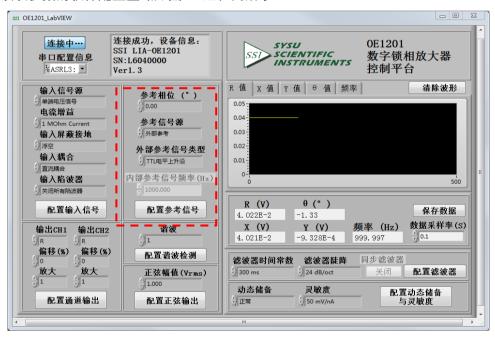


图41. 参考信号配置区域图

可供用户配置的选项如下表 6:

表6. 参考信号配置选项表

Phase(°)	设置 PSD 算法两路正交参考信号的相移角度,移相精度
参考相位设置	为 0.01°,输入范围为-180°至+180°
Reference Source	External

参考信号源设置	外部参考信号
	Internal
	内部参考信号
	TTL Rising Edge
External Ref Trigger	TTL 信号上升沿检测
外部参考信号类型设置	Sine Zero Crossing
	Sine 信号过零检测
Int.Frequency 内部参考信号频率设置	用户手动输入,频率范围为 1 mHz 到 120 kHz,频率分 辨率最小为 1 mHz

注意:

- 1.当选择好需要的设置后,需要点击"配置参考信号",以完成各项参数的配置;全部参数都可同时更改,只需点击一次"配置参考信号"即可。
- 2.每次重新修改其中的设置后,都需要点击"配置参考信号"按钮以完成配置,否则设置 无效。

6.2.5 动态储备和灵敏度配置

该项参数的软件配置区域如图 42 红框内所示:

图42. 动态储备和灵敏度配置区域图

可供用户配置的选项如下表 7:

表7. 动态储备和灵敏度配置选项表

Dynamic Reserve 动态储备设置	Low Noise
	低噪声
	Normal
	正常

		High Reserve 高储备				
Sensitivity 灵敏度设置	1 1	nV/fA	200 n	V/fA	50 uV/pA	10 mV/nA
	2 1	nV/fA	500 n	V/fA	100 uV/pA	20 mV/nA
	5 r	nV/fA	1 uV,	/pA	200 uV/pA	50 mV/nA
	10	nV/fA	2 uV,	/pA	500 uV/pA	100 mV/nA
	20	nV/fA	5 uV,	/pA	1 mV/nA	200 mV/nA
	50	nV/fA	10 u\	//pA	2 mV/nA	500 mV/nA
	100) nV/fA	20 u\	//pA	5 mV/nA	1 V/uA

注意:

- 1.当选择好需要的设置后,需要点击"配置动态储备与灵敏度",以完成各项参数的配置;全部参数都可同时更改,只需点击一次"配置动态储备与灵敏度"即可。
- 2.每次重新修改其中的设置后,都需要点击"配置动态储备与灵敏度"按钮以完成配置, 否则设置无效。

6. 2. 6 谐波检测配置

谐波检测的软件配置区域如图 43 红框内所示:

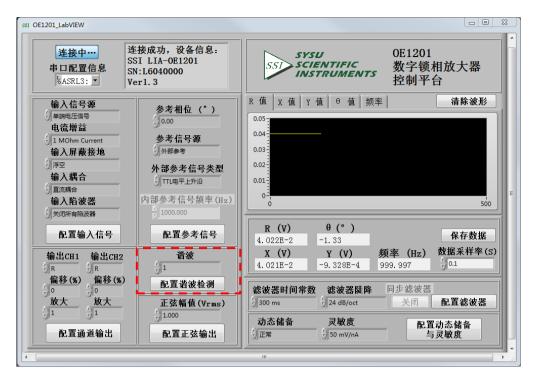


图43. 谐波及自动设置配置区域图

谐波检测设置需要用户手动输入,范围是 1-32767, 谐波频率不得超过 120kHz。

注意:

当选择好需要的谐波设置后,需要点击"配置谐波检测",以完成各项参数的配置。

6.2.7 滤波器配置

滤波器参数的软件配置区域如图 44 红框内所示:

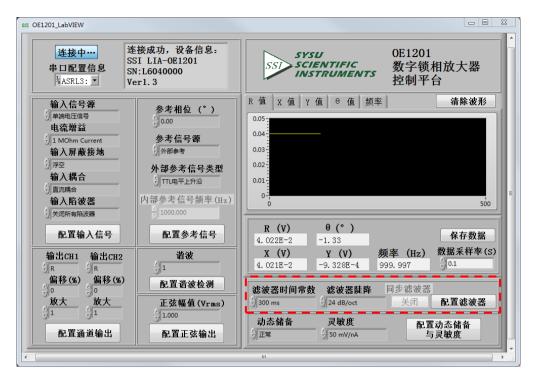


图44. 滤波器配置区域图

可供用户配置的选项如下表 8:

表8. 滤波器配置选项表

T: 6	10 us	3 ms	1 s	300 s	
	30 us	10 ms	3 s	1000 s	
Time Constant	100 us	30 ms	10 s	3000 s	
滤波器时间常数设置 	300 us	100 ms	30 s		
	1 ms	300 ms	100 s		
	6 dB/oct				
Filter Slope	12 dB/oct				
滤波器陡降设置	18 dB/oct				
	24 dB/oct				
Sync Filter	Disable/Enable				
同步滤波器设置	关闭/开启				

注意:

- 1.当选择好需要的设置后,需要点击"配置滤波器",以完成各项参数的配置;全部参数都可同时更改,只需点击一次"配置滤波器"即可。
- 2.每次重新修改其中的设置后,都需要点击"<mark>配置滤波器</mark>"按钮以完成配置,否则设置无效。
- 3."Sync Filter"的配置相对独立,不是通过按钮"配置滤波器",而是点击相应的"关闭"来

选择是否开启自动功能。当按钮被按下并显示"开启", 表示 OE1201 已经开

同步滤波器

启了同步滤波器功能,当用户需要关闭同步滤波器时,再次点击该按钮会重新复位 为初始状态"关闭",表示 OE1201 已经关闭了同步滤波器功能。

6. 2. 8 输出通道配置

该项参数的软件配置区域如图 45 红框内所示:

图45. 输出通道的配置区域图

可供用户配置的选项如下表 9:

表9. 输出通道配置选项表

Channel 1 输出 CH1	可以控制前面板上输出通道 CH1 输出用户需要的数值,数值类型包括信号的 X/Y/R/θ 值
Channel 2 输出 CH2	可以控制前面板上输出通道 CH2 输出用户需要的数值,数值类型包括信号的 X/Y/R/θ 值
Offset(%) 偏移设置	可调范围是 -100% +100% , 其中最小步进为 0.01%, 默认 0.00%
Expand 放大设置	可调范围是 1~256, 默认值为 1

注意:

- 1.当设置好 CH1 和 CH2 输出配置之后,点击"配置通道输出",以完成各项参数的配置; 全部参数都可同时更改。
- 2.每次重新修改其中的设置后,都需要点击"配置通道输出"按钮以完成配置,否则设置 无效。

6.2.9 正弦信号输出配置

该项参数的软件配置区域如图 46 红框内所示:

图46. 正弦信号输出配置区域图

正弦信号输出赋值设置由用户手动输入, 电压有效值值范围为 100 mVrms 至 1.000 Vrms, 最小分辨率为 1 mVrms。

6. 2. 10 数据保存

软件有数据记录保存的功能,可根据用户需要选择是否保存一段时间内的 OE1201 采集 到的数据。

保存的数据包括测量信号的 R、X、Y、θ 和频率值。

选择是否存储数据的具体步骤如下:

- 1.数据以 Excel 表格的形式保存,文件名为"Data_recorded_excel.xls",保存在程序目录下。保存数据
- 2.当软件运行时,点击图 47 红框内"保存数据"按钮,当按钮被按下并显示"保存中...",表示正在保存当前采集的数据。

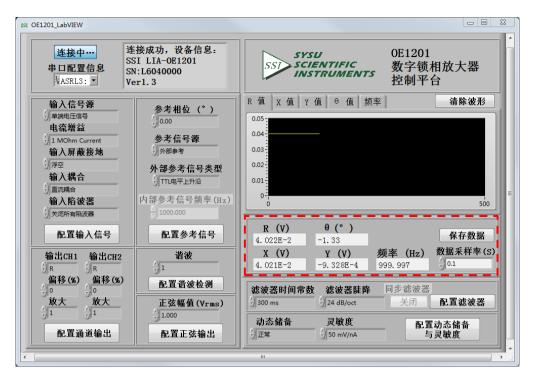


图47. 数据保存配置区域图

3.再次按下"保存中..."按钮,按钮状态由"保存中..."重新变为"保存数据",表示停止保存采集的数据。

"可以修改当前显示和保存数据的采样率,输入范围为 0.1 s~100 s。

6.3 软件使用实例

本使用实例将简单演示如何使用 OE1201 PC 软件进行锁相放大器的参数配置以及 $R \times X \times Y$ 和 θ 值的观察和记录。

首先需要按照前面 6.2 的软件使用说明, 成功连接 OE1201 与 PC 机, 然后就可以开始进行配置了。

假设用户需要进行以下锁相放大器设置,并进行数据采集与保存:

表10. 实例配置表

输入信号类型	单端电压输入
输入信号大小	40mV
输入耦合方式	AC
开启陷波器	不开启
动态储备	正常

满偏灵敏度	50mV/nA
参考信号输入	使用外部参考,1000 Hz
参考信号触发方式	TTL 上升沿触发
移相角度	0
低通滤波器的时间常数	300 ms
滤波器陡降	12 dB/oct
数据采样率	10 Hz

要完成以上设置,具体操作步骤如下:

①首先根据表 10,在输入信号配置中选择输入信号类型、输入耦合方式和是否开启陷波器,其它选项默认,如下图 48 所示,最后需要点击"配置输入信号",以完成输入信号的配置:

图48. 输入信号配置图

②根据表 10,在参考信号配置区域选择参考信号源类型、外部参考和参考相位值,其它选项默认,如下图 49 所示,最后需要点击"配置参考信号",以完成配置:

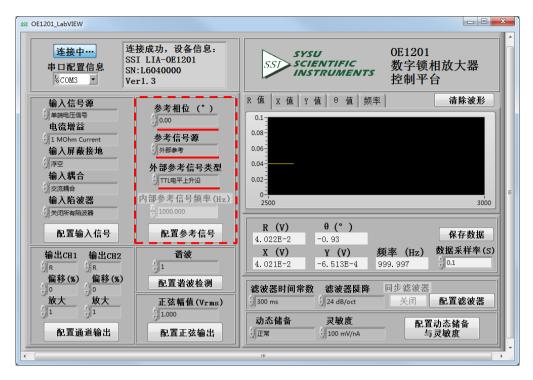


图49. 参考信号配置图

③根据表 10,在滤波器配置区域选择好时间常数和滤波器陡降,其它选项默认,如下图 50 所示,最后需要点击"配置滤波器",以完成配置:

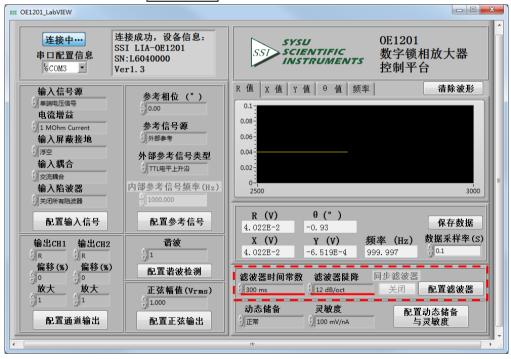


图50. 滤波器配置图

若不使用同步滤波器,则不需要点击相应的"关闭"按钮,保持不变即可。

同步滤波器

若使用同步滤波器,则点击相应的"关闭"按钮,当按钮被按下并显示"一开启 ",表示 OE1201 已经开启了同步滤波器功能,当用户需要关闭同步滤波器时,再次点击该按钮会重新复位为初始状态"关闭",表示 OE1201 已经关闭了同步滤波器功能。

④根据表 10,在动态储备和满偏灵敏度配置区域选择储备类型、灵敏度类型,其它选项默认,如下图 51 所示,最后需要点击"配置动态储备与灵敏度",以完成配置;

图51. 动态储备和灵敏度配置图

把配置前后的 OE1201 界面对比图如下两图所示,可见配置成功:

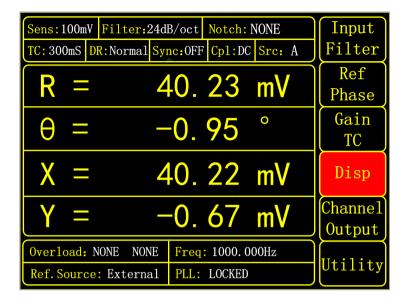


图52. 配置前 OE1201 界面

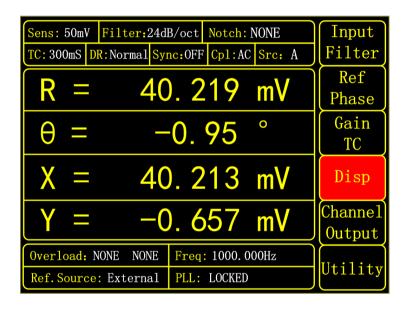


图53. 配置后 OE1201 界面

⑤以上步骤 1-4 已经根据要求配置完了 OE1201, 其它选项默认,此时可以开始进行数据的采集和保存了。

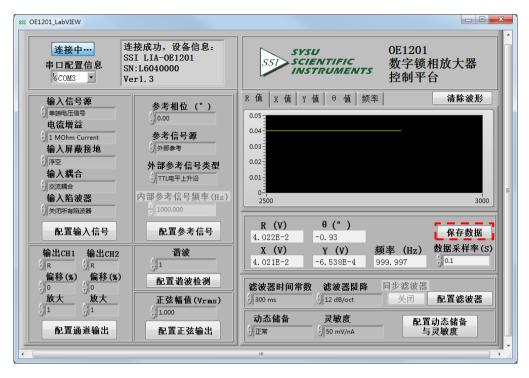


图54. 数据保存暂停中

如图 54 所示,点击红框内按钮"保存数据",当按钮被按下并显示"保存中...",表示正在保存当前采集的数据,如图 55 所示:

图55. 数据保存执行中

数据以 Excel 表格的形式保存在选定目录下,文件名为"Data recorded excel.xls",如图

56 所示:

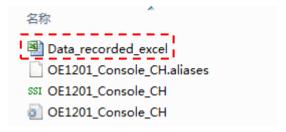


图56. 保存数据表格

7. 性能测试

简介

本章性能测试的目的是让用户验证我们设备的测量结果能否正确,同时增加对我们的信 心。

每一项测试的结果可以记录在本章最后的性能测试记录表上。

序列号

如果有疑问需要联系我们公司,请记下设备的序列号,方便我们登记资料。序列号在设备背面、光盘盒和包装箱上均有标明。同时设备开启后,在<Utility>菜单的<Info>选项中也可以查看序列号。

固件版本

设备开启后,在<Utility>菜单的<Info>选项中可以查看设备的固件版本号。

预热

由于设备内部芯片存在温漂现象,为了减少测试结果的误差,在测试之前,最好先启动设备预热一段时间(30-60分钟)。

测试记录

本章最后有一份性能测试记录表,填写之前最好备份一份。在完成所有测试并填写完记录表后,可以根据记录表上的数据来判断设备的性能测试是否通过。请保存好记录表,方便以后跟我们工程师联系。

测试失败

如果测试失败,请重新检查一遍本设备和外部设备的设置是否正确;设置检查完成后,确保设置正确,预热后重新进行测试。如果条件允许,更换其他外部设备再进行测试。

如果测试还是失败,请查询设备的序列号和固件版本号,并准备好性能测试记录表,与我们公司进行联系。

测试必要设备

1.函数信号发生器

Freq Range 1 Hz to 1 MHz
Freq Accuracy Better than 5 ppm

Amplitude Accuracy 0.2dB from 1 Hz to 120 kHz

Spurious≤-55 dBcTTL SYNCAvailableOutput Setup50Ω or High Z

推荐 AGILENT 33250A

2.数字万用表

Voltage Range ≥20 V, 4 1/2 digits

Accuracy ≤0.005%

推荐 KEITHLEY 2100

3.直流稳压源

Voltage Range ≥10 V Accuracy <10 mVpp

推荐 RIGOL DP831A

4.短路连接器

BNC 电阻 50 Ω

前面板液晶测试

打开背部电源开关,启动设备;观察液晶屏幕,是否点亮;在开机界面中,观察屏幕是 否存在坏点。

键盘测试

在启动设备后,尝试按下某一个按键,会听到设备发出"滴"声;测试每一个按键,观察 屏幕,看对应的设置是否改变;最后在<Sensitivity>选项中测试旋钮是否工作正常。

7.1 启动测试

通过启动测试检测锁相放大器的硬件。必须在进行其它性能测试前完成这项测试。

设备

在本测试中不需要外部设备。

步骤

- 1) 打开背部电源开关,启动锁相放大器;
- 2) 观察设备屏幕、键盘功能、背部散热风扇是否工作正常;
- 3) 在本章最后的测试记录表中记录通过与否。

7.2 直流偏置

本项测试主要进行输入端直流偏置的测试。

设备

使用 50 ΩBNC 电阻负载将 A/I 接口短路, 短路后锁相放大器可以测量自身的直流偏置。

步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 按以下顺序修改设置:

<Ref.source>: 修改为<Internal>。

<Ref.Frequency>: 修改为 1 Hz。

<Sensitivity>: 使用旋钮修改为<1 mV>。

- 3) 等待 10 秒后, 记录<R>值;
- 4) 修改设置:

<Coupling>: 修改为<DC>。

- 5) 等待 10 秒后, 记录<R>值;
- 6) 到此完成直流偏置测试,在本章最后的测试记录表中填入数据。

7.3 共模抑制

本项测试主要进行锁相放大器的共模抑制测试。

设备

我们使用信号发生器产生的正弦波作为输出来提供信号。

连接锁相放大器的 SINF OUT 输出端与 A、B 输入端。把 BNC T 型接头插到 SINF OUT 接 口上,使用 2条等长的信号线(带 BNC 公接头)分别连接 T 型头与 A/I、B 接口。

步骤

- 1) 先关闭再打开背部电源开关, 重新启动锁相放大器:
- 2) 按以下顺序修改设置:

使用旋钮修改为<1 V>。 <Sensitivity>:

使用旋钮修改为<1.000V>。 <Sine output>:

修改为<Internal>。 <Ref.source>: <Ref.Frequency>: 修改为 100 Hz。

- 3) 等待<R>值稳定, <R>值应该为1V(3%误差);
- 4) 按以下顺序修改设置:

<Coupling>: 修改为<DC>。 修改为<A-B>。 <Source>:

使用旋钮修改为<200uV>。 <Sensitivity>:

- 5) 等待 10 秒后, 记录<R>值;
- 6) 到此完成共模抑制的测试,共模抑制比 CMRR = 20lg(1.0/R),其中 R 值单位为 V。在 本章最后的测试记录表中填入数据。

7.4幅值精度和平坦度

本项测试主要进行幅值精度和频率响应的测试。

设备

我们使用函数信号发生器提供精准的频率和正弦波。

使用一条信号线(带 BNC 公接头)连接函数信号发生器的输出接口到锁相放大器的 A/I 接口,使用另一条信号线连接函数信号发生器的参考信号接口和锁相放大器的 REF IN 接口。

设置函数信号发生器:

函数: 正弦波 频率: 1 kHz 幅值: 1 Vrms 偏置: 0 V 输出: 高阻 扫频: off

调整: none

步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:

Filter dB/oct: 修改为 24 dB/oct。

3) 幅值精度的测试需要保持函数信号发生器的频率为 1 kHz,按以下顺序修改其幅值和锁相放大器的<Sensitivity>:

<u>Sensitivity</u>	<u>Amplitude</u>		
1 V	1.0000 Vrms		
200 mV	200.00 mVrms		
100 mV	100.00 mVrms		
20 mV	20.000 mVrms		
10 mV	10.000 mVrms		

- a) 设置函数信号发生器的幅值;
- b) 设置锁相放大器的<Sensitivity>:
- c) 等待 10 秒后, 记录<R>值, 然后测试另外一组数据;
- d) 重复 3a 到 3c 直到完成幅值精度测试。
- 4) 频率响应的测试在大于 1 kHZ 的频率下进行,按以下顺序修改函数发生器的频率:

Test Frequencies

24 kHz

48 kHz

72 kHz

96 kHz

120 kHz

- a) 设置锁相放大器的<Sensitivity>为<200 mV>;
- b) 设置函数信号发生器的频率为 1kHz, 幅值为 200.00 mVrms;
- c) 按顺序设置函数信号发生器的频率;
- d) 等待 10 秒后,记录<R>值,然后测试另外一组数据;
- e) 重复 4c 到 4d 直到完成频率响应测试。
- 5) 到此完成幅值精度和频率响应的测试,在本章最后的测试记录表中填入数据。

7.5 幅值线性度

本项测试主要进行幅值线性度的测试,测试锁相放大器如何在信号小于满量程的情况下 准确测量。

设备

我们使用函数信号发生器提供精准的频率和正弦波。

使用一条信号线(带 BNC 公接头)连接函数信号发生器的输出接口到锁相放大器的 A/I接口,使用另一条信号线连接函数信号发生器的参考信号接口和锁相放大器的 REF IN 接口。

设置函数信号发生器:

函数: 正弦波 频率: 1 kHz 幅值: 1 Vrms 偏置: 0 V 输出: 高阻 扫频: off 调整: none

步骤

1) 先关闭再打开背部电源开关,重新启动锁相放大器;

2) 修改设置:

<Filter dB/oct>: 修改为<24 dB/oct>。

<Sensitivity>: 使用旋钮修改为<1 V>。

3) 保持函数信号发生器的频率为 1 kHz, 按以下顺序修改其幅值:

<u>Amplitude</u>

1.0000 Vrms

100.00 mVrms

10.000 mVrms

- a) 设置函数信号发生器的幅值;
- b) 等待 10 秒, 记录<R>值, 然后测试另外一组数据;
- c) 重复 3a 到 3b 直到完成所有数据测量。
- 4) 到此完成幅值线性度的测试,在本章最后的测试记录表中填入数据。

7.6 频率精度

本项测试主要进行频率精度的测试。

设备

我们使用函数信号发生器提供参考信号。

使用一条信号线(带 BNC 公接头)连接函数信号发生器的参考信号接口和锁相放大器的 REF IN 接口。

步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 设置函数信号发生器的频率为 10 kHz;
- 3) 等待锁相放大器屏幕右下方的<PLL>由<UNLOCK>变为<LOCKED>后,记录<Freq>值;
- 4) 到此完成频率精度测试,在本章最后的测试记录表中填入数据。

7.7 Sine Out 幅值精度和平坦度

本项测试主要测试由信号发生器产生的正弦波(Sine Out)的幅值精度和频率响应。

设备

使用一条 1 米长的信号线(带 BNC 公接头)连接 SINE OUT 接口和 A/I 接口。

步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:

<Sensitivity>: 使用旋钮修改为<1 V>。

<Ref.source>: 修改为<Internal>。

3)幅值精度的测试需要保持内部参考信号的频率为 1 kHz, 按以下顺序修改<Sensitivity>和 Sine 幅值:

<u>Sensitivity</u>	Sine Output
1 V	0.800 Vrms
500 mV	0.400 Vrms
200 mV	0.160 Vrms

- a) 设置<Sine Output>的幅值;
- b) 设置锁相放大器的<Sensitivity>;
- c) 等待 10 秒后,记录<R>值,然后测试另外一组数据;
- d) 重复 3a 到 3c 直到完成幅值精度测试。
- 4) 频率响应的测试在大于 1 kHz 的频率下进行,按以下顺序修改<Ref.Frequency>的值:

Test Frequencies

24 kHz

48 kHz

72 kHz

96 kHz

120 kHz

- a) 设置锁相放大器的<Sensitivity>为 1 V;
- b) 设置<Sine Output>的值为 0.800 Vrms;
- c) 按顺序设置<Ref.Frequency>的值;
- d) 等待 10 秒后, 记录<R>值, 然后测试另外一组数据;
- e) 重复 4c 到 4d 直到完成频率响应测试。
- 5) 到此完成<Sine Out>幅值精度和频率响应的测试,在本章最后的测试记录表中填入数据。

7.8 直流输出

本项测试主要测试锁相放大器的直流输出。

设备

我们使用数字万用表来测量锁相放大器的直流输出。 使用 50ΩBNC 电阻负载将 A/I 接口短路。

步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:

<Ref.source>: 修改为<Internal>。

- 3) 按以下步骤:
 - a) 使用信号线连接 CH1(或 CH2)接口到数字万用表,设置数字万用表量程为 19.999 V;
 - b)按以下列表顺序修改<Channel Output>中的<Offset>:

Offset (%)
100.00
50.00
0.00
-50.00
-100.00

- c) 等待 10 秒后, 记录数字万用表读数, 然后测试下一组数据;
- d) 重复 2b 到 2c, 直到完成 CH1 的测试, 然后换 CH2 连接到数字万用表, 继续完成 CH2 的测试。

7.9 输入噪声

本项测试主要测试锁相放大器的输入噪声。

设备

使用 50ΩBNC 电阻负载将 A/I 接口短路,输入接地后锁相放大器可以测量自身的输入噪声。

步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 按以下顺序修改设置:

<Ref.source>: 修改为<Internal>。

<Ref.Frequency>: 修改为 997 Hz。

<Sensitivity>: 使用旋钮修改为<100 nV>。

<Reserve>: 修改为<Low>。

<Filter dB/oct>: 修改为<24 dB/oct>。

<Disp>: 切换到 Disp 菜单查看显示的数值。

- 3) 等待读数较为稳定后,记录 R值(取最大值);
- 4) 到此完成输入噪声测试,在本章最后的测试记录表中填入数据。

7. 10 0E1201 性能测试记录表

OE1201 性能测试记录表					
序列号:		测试人员:			
固件版本: _		日期:			
仪器用途:					
_					
1.启动测试					
	Pass		Fail		
2.直流偏置					
	Input Coupling	<u>Reading</u>	<u>Upper Limit</u>		
	AC		0.500 mV		
	DC		0.500 mV		
っ井塔伽如					
3.共模抑制	F=====================================	Dandina	I lana an Linaik		
	<u>Frequency</u>	Reading	Upper Limit		
	100 Hz		30 uV		
4.幅值精度和	和平坦度				
<u>Sensitivity</u>	<u>Amplitude</u>	<u>Lower Limit</u>	<u>Reading</u>	<u>Upper Limit</u>	
1 V	1.0000 Vrms	0.9800 V		1.0200 V	
200 mV	200.00 mVrms	198.00 mV		202.00 mV	
100 mV	100.00 mVrms	98.00 mV		102.00 mV	
20 mV	20.000 mVrms	19.60 mV		20.400 mV	
10 mV	10.000 mVrms	9.800 mV		10.200 mV	
<u>Sensitivity</u>	<u>Frequency</u>	<u>Lower Limit</u>	Reading	<u>Upper Limit</u>	
200 mV	24 kHz	196 mV		204 mV	
200 mV	48 kHz	196 mV		204 mV	
200 mV	72 kHz	196 mV		204 mV	
200 mV	96 kHz	196 mV		204 mV	
200 mV	120 kHz	196 mV		204 mV	
5.幅值线性质					
Sensitivity	<u>Amplitude</u>	<u>Lower Limit</u>	Reading	Upper Limit	
1 V	1.0000 Vrms	0.9900 V		1.0100 V	
	100.00 mVrms	0.0990 V		0.1010 V	
	10.000 mVrms	0.0099 V		0.0101 V	

OE1201 性能测试记录表							
6.频率精度							
<u>Frequ</u> 10 k		er Limit 190 kHz	Reading Uppe 10.01	<u>r Limit</u> 0 kHz			
<u>Sensitivity</u>	SineOut Ampl.	Lower Limit	Reading	<u>Upper Limit</u>			
1 V	0.800 Vrms	0.776 V		0.824 V			
500 mV	0.400 Vrms	388.00 mV		412.00 mV			
200 mV	0.160 Vrms	155.20 mV		164.80 mV			
SineOut Ampl.	<u>Frequency</u>	<u>Lower Limit</u>	<u>Reading</u>	<u>Upper Limit</u>			
0.800 Vrms	24 kHz	0.776 V		0.824 V			
0.800 Vrms	48 kHz	0.776 V		0.824 V			
0.800 Vrms	72 kHz	0.776 V		0.824 V			
0.800 Vrms	96 kHz	0.776 V		0.824 V			
0.800 Vrms	120 kHz	0.776 V		0.824 V			
8.直流输出							
<u>Output</u>	<u>Offset</u>	<u>Lower Limit</u>	Reading	<u>Upper Limit</u>			
CH1	100.00	4.850 V		5.150 V			
	50.00	2.375 V		2.625 V			
	0.00	-0.050 V		0.050 V			
	-50.00	-2.625 V		-2.375 V			
	-100.00	-5.150 V		-4.850 V			
<u>Output</u>	<u>Offset</u>	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>			
CH2	100.00	4.850 V		5.150 V			
	50.00	2.375 V		2.625 V			
	0.00	-0.050 V		0.050 V			
	-50.00	-2.625 V		-2.375 V			
	-100.00	-5.150 V		-4.850 V			
9.输入噪声							
Frequency	Sensi	<u>Sensitivity</u>		<u>Upper Limit</u>			
997 Hz	100		Reading	15 nV/vHz			

8. 操作实例

8.1基本信号测量

本操作实例将简单演示如何使用 OE1201 测量信号的 R、 θ 、X 以及 Y 值。你需要准备两条带 BNC 接头的信号线用于输入待测信号及参考信号。现在我们举例使用函数信号发生器产生一个幅值为 80 mVrms、频率为 1 kHz 的正弦波,并用 OE1201 进行测量。步骤如下:

- 1. 断开所有与机箱连接的信号线,接入电源,打开电源开关,此时系统处于默认设置状态。
- 2. 用一条带 BNC 接头的信号线连接函数信号发生器的输出接口和 OE1201 前面板 SIGNAL IN 的 A/I 接口,用另一条带 BNC 接头的信号线连接函数信号发生器的参考信号接口和 OE1201 前面板的 REF IN 接口,如图 57 所示:

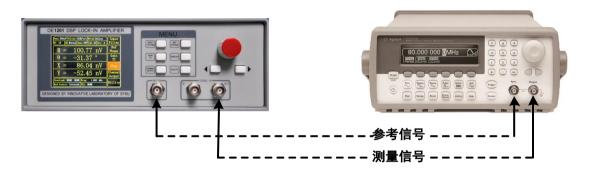


图57. 信号线连接图

3. 打开函数信号发生器电源,将参数设置为"波形:正弦波"、"幅值:80 mVrms"、"频率: 1 kHz"、"输出阻抗:高阻",待测信号的参数如图 58 所示:

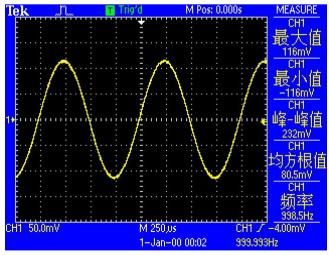


图58. 待测信号参数图

4. 开启函数信号发生器的输出,观察主界面中监测栏的<Overload>是否提示溢出:

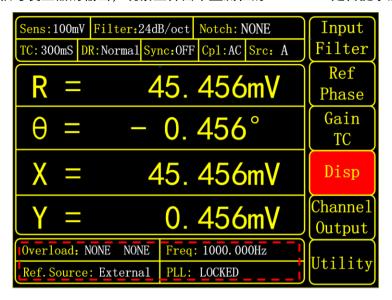


图59. 主界面监测栏

若前级输入溢出,则显示 <u>Overload: INPUT NONE</u>;若放大溢出,则显示 <u>Overload: NONE</u> GAIN;若同时溢出,则显示 <u>Overload: INPUT GAIN</u>。

前级溢出时应立即减小数字信号发生器输出幅值,放大溢出应立即调节灵敏度值(OE1201 输入端峰值高于 1.7 V 或谷值低于-1.7 V 时发生前级溢出,蜂鸣器会发出嘀嘀的警报。本机默认灵敏度为 100 mV,因此本例中数字信号发生器输出幅值为 80 mVrms 的正弦波时不会发生溢出,但是测量其他信号时要注意溢出情况)。调节灵敏度值的方法见下。

5. 调节灵敏度值。按下前面板[GAIN/TC]按键进入子菜单。

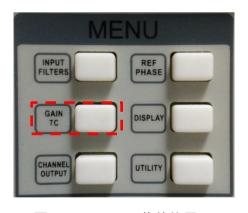


图60. [GAIN/TC]菜单位置

[GAIN/TC]子菜单界面如下。

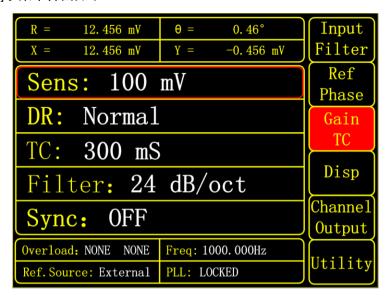


图61. GAIN/TC 菜单界面

按下旋钮以选中红色方框中的<Sensitivity>功能,选中区域中的 Sens 参数会高亮显示,通过旋转旋钮调节<Sensitivity>值,使测量信号值尽量满偏而不溢出。此处我们调节为<100 mV>即可。至此,我们即简单测出了从函数信号发生器输送过来的正弦波,如图 61 所示,测量出来的数据为:R=80.08 mV, θ =0.18°。

6. 主界面数据栏显示<R>、<θ>、<X>及<Y>值。按下前面板[DISPLAY]按键进入子菜单。

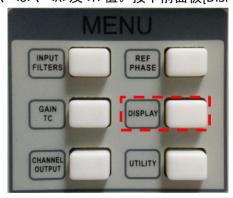


图62. [DISPLAY]菜单位置

DISPLAY 子菜单界面如下。

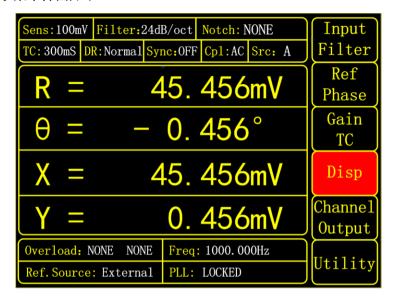


图63. [DISPLAY]菜单界面

系统默认设置中,主显示窗口会显示出<R>、<θ>、<X>、<Y>的值

7. 主界面监测栏显示<R>、<θ>、<X>、<Y>值。

当从 Disp 菜单切换至其余菜单的时候,检测栏的会自动切换显示<R>、<0>、<X>、<Y>值。此时监测栏显示<R>、<0>、<X>和<Y>的值,如图 643 所示。

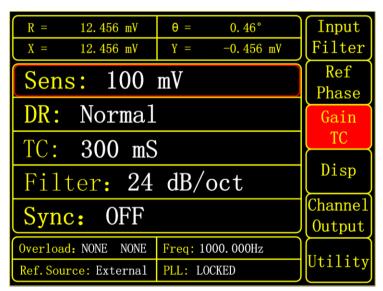


图64. 监测栏显示效果图

8.2 谐波测量

本实例将演示如何测量输入信号的谐波分量值。你需要准备两条带 BNC 接头的信号线用于输入待测信号及参考信号。我们举例使用函数信号发生器产生一个幅值为 80 mVrms、频率为 1 kHz 的方波,并用 OE1201 进行测量其 1 次和 3 次谐波。步骤如下:

- 1. 断开所有与机箱连接的信号线,接入电源,打开电源开关,此时系统处于默认设置状态。
- 2. 用一条带 BNC 接头的信号线连接函数信号发生器的输出接口和 OE1201 前面板 SIGNAL IN 的 A/I 接口,用另一条带 BNC 接头的信号线连接函数信号发生器的参考信号接口和 OE1201 前面板的 REF IN 接口,如图 655 所示:

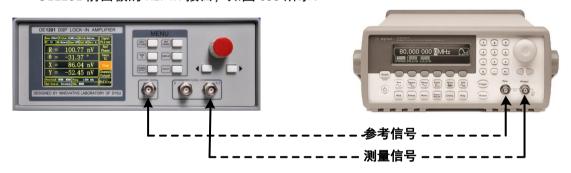


图65. 信号线连接图

3. 打开函数信号发生器电源,将参数设置为"波形:方波"、"幅值:80 mVrms"、"频率:1 kHz",待测信号的参数如图 66 所示:

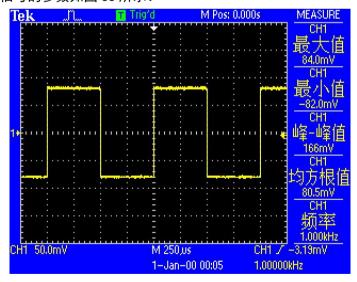


图66. 待测信号参数图

4. 按下前面板[REF PHASE]按键进入子菜单。

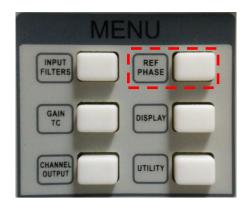


图67. [REF PAHSE]子菜单位置

[REF PHASE]子菜单界面如下。

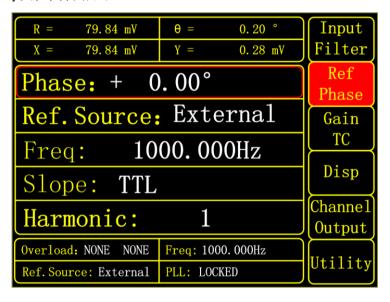


图68. REF PHASE 子菜单

其中<Harmonic>选项中设置测量的谐波次数,使用键盘输入可输入所需的阶次。 按下[旋钮],可通过[旋钮]上下旋转来设置<Harmonic>选项的数值,例如旋转旋钮设置 参数为 3 次谐波。结果如图 69 所示。

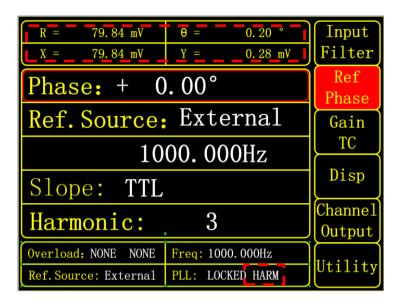


图69. 方波三次谐波测量结果

方波的谐波理论值计算:设方波的峰峰值为 E,角频率为 ω ,则经过傅里叶展开之后得到:

$$f(t) = \frac{2E}{\pi} \left(\sin(\omega t) + \frac{1}{3} \sin(3\omega t) + \frac{1}{5} \sin(5\omega t) \dots + \frac{1}{n} \sin(n\omega t) \right)$$

其 n 次谐波即为正弦波:

$$f(t) = \frac{2E}{n\pi} \sin(n\omega t)$$

因此得到 n 次谐波的有效值为:

$$R = \frac{\sqrt{2}E}{n\pi}$$

因此我们可以根据此公式来比较测量结果与理论结果是否接近。在本实例中,方波峰峰值 E 为 160mV,则 1 次谐波计算值为:

$$R = \frac{\sqrt{2} \times 160}{1 \times \pi} \,\text{mV} \approx 72.025 \,\text{mV}$$

3 次谐波计算值为:

$$R = \frac{\sqrt{2} \times 160}{3 \times \pi} \,\text{mV} \approx 24.008 \,\text{mV}$$

根据以上算法,即可将测量值与理论计算值进行对比。

8.3 某任意光源光谱测量

本实例将演示如何测量一个任意光源的光谱。你需要准备好光谱测量的有关仪器,包括光学斩波器(SIGNAL RECOVERY Model 197 Light Chopper)、光栅单色仪(WDG15-Z)及其控制系统、光电探头(电探头采用日本 Hamamatsu 公司 S2386 系列的 Si 光敏二极管)、数据采集平台(NI cDAQ-9172 数据采集平台)和 PC 等,控制单色仪在其光谱测量范围内自动扫描,并用 OE1201 对光电流进行测量。步骤如下:

- 1. 断开所有与机箱连接的信号线,接入电源,打开电源开关,此时系统处于默认设置状态。
- 2. 设置 OE1201 的相关参数:
 - (1) 在前面板菜单栏中选择[INPUT/FILTERS]键进入子菜单,选择<I>电流输入模式,电流增益设置为<1 M>,其它设置为默认状态;
 - (2) 选择[REF/PHASE]键进入子菜单,参考信号源选择<External>,信号源类型选择<TTL>;
 - (3) 选择[GAIN/TC]键进入子菜单,在第一次测量时满偏灵敏度设置为最大值<1 uA>,在 随后的测量中可以根据实际适当调小;动态储备设置为<Normal>;时间常数设置为 <300 ms>;低通滤波器陡降设置为<12 dB/oct>;关闭同步滤波器;
 - (4) 选择[OUTPUT/OFFSET]进入子菜单,选择输出通道一<CH1>,信号源选择<R>,输出速度设置为<Fast>;
- 3. 搭建起光谱测量平台,并用一条带 BNC 接头的信号线连接光电探头的输出接口和 OE1201 前面板 SIGNAL IN 的 A/I 接口;用另一条带 BNC 接头的信号线连接光学斩波器的 同步频率信号输出接口 Sync out f1 和 OE1201 前面板的 REF IN 接口;用一条带 BNC 接头的信号线连接 OE1201 前面板的 CH1 接口和数据采集平台,示意图如图 70 所示:

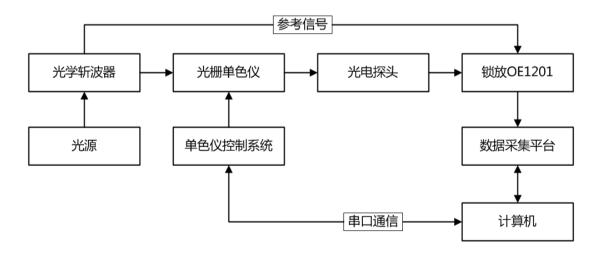


图70. 光谱测量平台示意图

该平台的实际连接图如下图 71 所示:

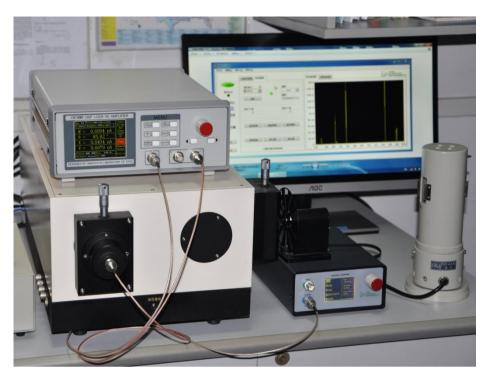


图71. 光谱测量平台实物连接图

4. 开始光谱测量实验,同时利用数据采集平台采集光谱数据,可以得到如下光谱曲线图 72 (未定标):

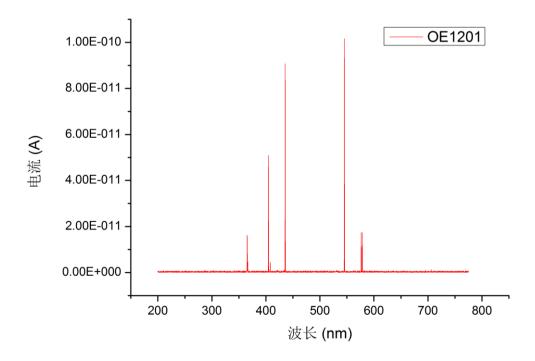
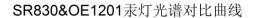



图72. OE1201 测得的光谱曲线图

5. 将 OE1201 替换为 SR830, 在相同的参数设置下进行同样的光谱测量实验, 得到的光谱

曲线对照图 73 如下:

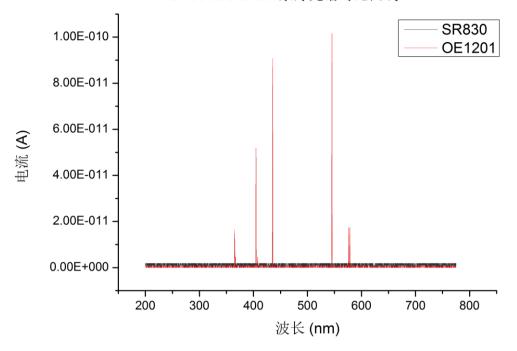


图73. 两台锁放测得的光谱曲线对照图

观察波形图可得, 两条曲线基本重合。

8.4 串口通讯

本实例将演示 OE1201 远程控制串口环境搭建以及调试操作, 你需要准备一条 USB 线, 步骤如下:

- 1. 请用 USB 线连接 OE1201 的 USB 插口跟电脑上的任一 USB 插口。
- 2. 电脑会自动识别到 USB 设备,然后提示安装驱动程序。如果电脑操作系统为 WIN 7 系统,系统一般就会自动在网络上搜索驱动程序并自动安装,这个过程需要等待一段时间。如果安装失败(电脑没有连接网络会导致失败)就需要手动去安装 USB 的驱动,安装细节请参考 6.2 章节。
- 3. 打开光碟中 uart 文件夹,双击 UartAssist.exe 文件,弹出软件界面如图 74:

图74. 打开的软件界面

该串口调试软件包含了通讯设置,接收区设置,发送区设置,接收区,以及发送区。 OE1201 默认波特率为 921600,校验位无,数据位 8 位,停止位 1 位(OE1201 的波特率 及校验位等可通过前面板键盘上的 RS232 菜单选项来设置)。

串口号需要选择电脑为 OE1201 USB 接口自动分配的 COM 口, COM 端口编号可通过设备管理器中的端口(COM 和 LPT)选项来查看(计算机右键->属性->设备管理器->端口),如

图 75 所示:

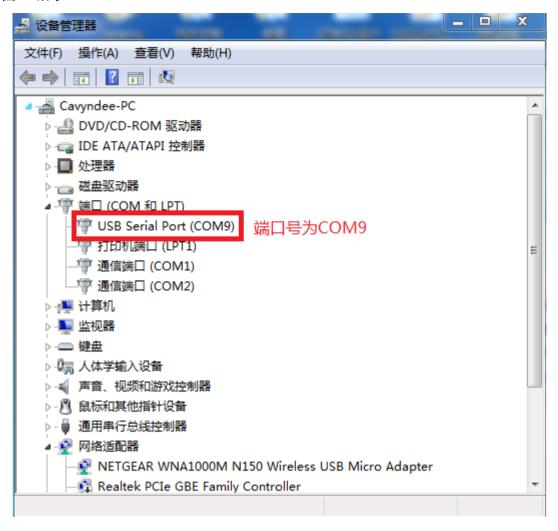


图75. 端口号的查看

当配置好了端口号、波特率、校验位、数据位、停止位之后,如果连接按钮左边小圆圈为黑色熄灭状态(),需要点击一次改变按钮状态显示为红色点亮状态(),如果按钮为红色点亮状态就表明电脑跟当前串口号设备已连接成功,

若多次点击连接不成功,请检查端口号是否选择合适,然后再尝试连接。连接成功如图 76

所示:

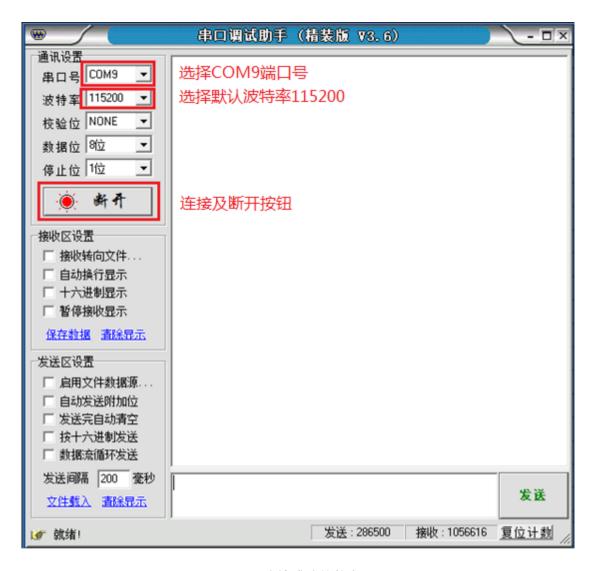


图76. 连接成功的状态

4. 完成以上操作之后,即可向 OE1201 发送指令来进行通讯:

OE1201 指令要求格式是四个大写字母助记符后加选项参数,例如指令"SENS 25+回车符(OD)"或"SENS ?+回车符(OD)",连续多条的指令可以用";"号分隔开,指令结尾一定要附加上回车符或十六进制数 OD,更多详细指令请查看远程编程章节的介绍。

需要特别注意的是指令结尾一定要附加上回车符或十六进制数 0D 才会有效执行当前指令。发送指令时首先在发送区敲入指令,然后紧接着敲一下回车,最后点击发送按钮,指令就会发送出去。如图 77、图 78 所示:

图77. ASCII 码形式发送和接收指令

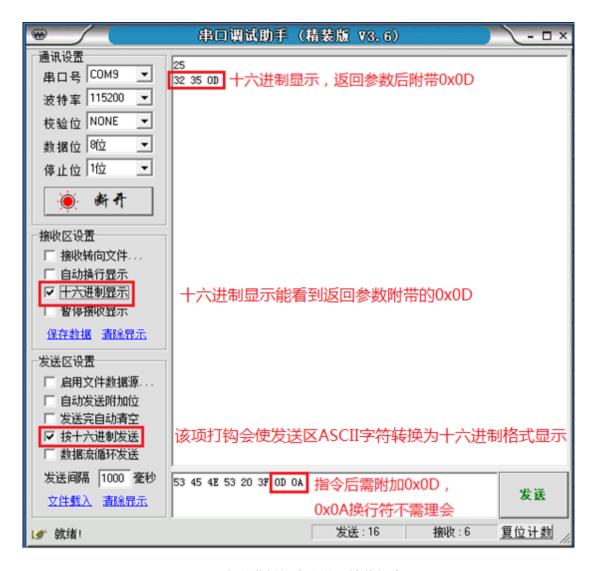


图78. 十六进制格式发送和接收指令

同时的,串口调试助手可配置自动添加发送回车符 0X0D。勾选发送区设置的"自动发送附加位"选项,在弹出的附加位设置窗口选择固定位,附加值设置为十六进制值"0D"即可。配置如图 79 所示:

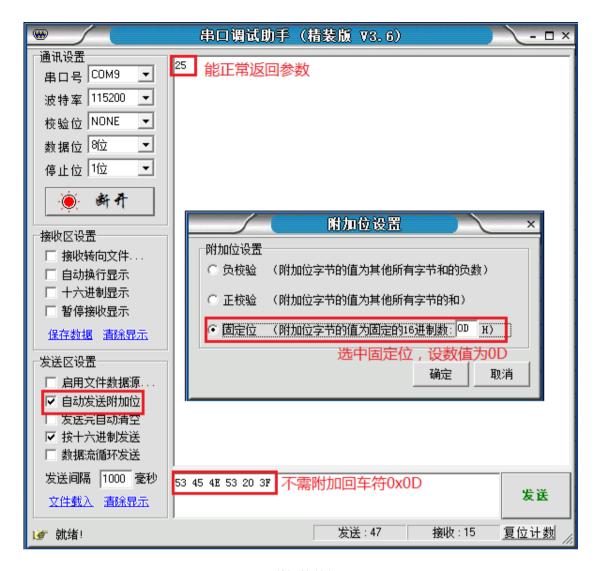


图79. 附加位的设置

多个指令的发送需要添加";"号来分隔开,例如发送指令"SENS 24;FMOD 1;FREQ 1000;SENS ?;FMOD ?;FREQ ?"效果如图 800 所示:

图80. 多重指令的执行

连续读取 OE1201 的 X、Y、R、 θ 和 Freq 值,可以设置串口调试助手软件的间隔发送,配置如图 811 所示:

图81. 连续读取单个 R 值

通过串口调试助手远程控制发送指令设置 OE1201 内部参数时,会同时更新 LCD 显示屏上状态的显示。例如 OE1201 当前状态栏的<sens>值为<100 mV>,对应指令标识号为 25。当发送了指令"SENS 24"之后,OE1201 状态栏<sens>值会改变为指令标识码 24 所对应的值为<50 mV>。

OE1201 不只是单一兼容以上这款串口调试助手(精装版 V3.6)的远程控制,现在网络上许多的串口调试工具都能很好的兼容,操作步骤也基本类似。